Rewrite aiming error code to account for distance and engine quality.

Now the error is simulated by using an approximate normal distribution.
develop
Alexander Gavrilov 2014-03-02 15:46:04 +04:00
parent ef93f2ea4c
commit df22f25a69
1 changed files with 78 additions and 20 deletions

@ -74,6 +74,62 @@ using Screen::Pen;
DFHACK_PLUGIN("siege-engine");
/*
Aiming is simulated by using a normal distribution to perturb X and Y.
The chance a normal distribution is within n*sigma of median is
erf(n/sqrt(2)). For direct hit, it must be within 0.5 tiles of
center, so it is erf(0.5/sigma/sqrt(2)) = erf(1/sigma/sqrt(8)).
Since it must hit in both X and Y, it must be squared, so final
is erf(1/sigma/sqrt(8))^2 = erf(skill*coeff/(distance*sqrt(8)))^2.
The chance to hit a RxR area is erf(skill*coeff*R/(distance*sqrt(8)))^2.
Catapults can fire between 30 and 100, and the projectile is supposed
to travel in an arc, and is thus harder to aim; yet they require a direct
hit unless using the feature for firing bins.
The coefficient of 30 gives the following probabilities:
| | Direct Hit | 3x3 Area Hit |
| | 30 50 100 | 30 50 100 |
| Novice | 15% 5% <5% | 75% 40% 10% |
| Adequate | 45% 20% 5% | 100% 85% 40% |
| Competent | 75% 40% 10% | 100% 100% 70% |
| Proficient | 100% 75% 30% | 100% 100% 95% |
| Professional | 100% 100% 80% | 100% 100% 100% |
| Legendary | 100% 100% 95% | 100% 100% 100% |
Original data:
* http://www.wolframalpha.com/input/?i=erf%2830*x%2Fsqrt%288%29%2F30%29^2%2C+erf%2830*x%2Fsqrt%288%29%2F50%29^2%2C+erf%2830*x%2Fsqrt%288%29%2F100%29^2%2C+x+from+0+to+15
* http://www.wolframalpha.com/input/?i=erf%2830*x*3%2Fsqrt%288%29%2F30%29^2%2C+erf%2830*x*3%2Fsqrt%288%29%2F50%29^2%2C+erf%2830*x*3%2Fsqrt%288%29%2F100%29^2%2C+x+from+0+to+6
Ballista can fire up to 200 tiles away, and can't use the bin method
to compensate for inaccuracy. On the other hand, it shoots straight
and should be easier to aim. It also damages everything in its path,
so the hit probability may be estimated using an 1D projection.
The coefficient of 48 gives the following probabilities:
| | Direct Hit | 1D Hit |
| | 30 50 100 200 | 30 50 100 200 |
| Novice | 25% 10% 5% <5% | 55% 35% 20% 10% |
| Adequate | 80% 45% 15% 5% | 90% 65% 40% 20% |
| Competent | 95% 70% 30% 8% | 100% 85% 50% 30% |
| Proficient | 100% 95% 65% 20% | 100% 100% 75% 45% |
| Accomplished | 100% 100% 95% 60% | 100% 100% 100% 75% |
| Legendary | 100% 100% 100% 85% | 100% 100% 100% 90% |
Original data:
* http://www.wolframalpha.com/input/?i=erf%2848*x%2Fsqrt%288%29%2F30%29^2%2C+erf%2848*x%2Fsqrt%288%29%2F50%29^2%2C+erf%2848*x%2Fsqrt%288%29%2F100%29^2%2C+erf%2848*x%2Fsqrt%288%29%2F200%29^2%2C+x+from+0+to+15
* http://www.wolframalpha.com/input/?i=erf%2848*x%2Fsqrt%288%29%2F30%29%2C+erf%2848*x%2Fsqrt%288%29%2F50%29%2C+erf%2848*x%2Fsqrt%288%29%2F100%29%2C+erf%2848*x%2Fsqrt%288%29%2F200%29%2C+x+from+0+to+15
Quality can increase range of both engines by 25% max, so it
also boosts aiming by 1.06x every step, up to 33.8% gain.
*/
/*
* Misc. utils
*/
@ -190,6 +246,12 @@ static void random_direction(float &x, float &y, float &z)
x = vec[0]; y = vec[1]; z = vec[2];
}
static double random_error()
{
// Irwin-Hall approximation to normal distribution with n = 3; varies in (-3,3)
return (rng.drandom0() + rng.drandom0() + rng.drandom0()) * 2.0 - 3.0;
}
static const int WEAR_TICKS = 806400;
static bool apply_impact_damage(df::item *item, int minv, int maxv)
@ -265,6 +327,8 @@ struct EngineInfo {
int proj_speed, hit_delay;
std::pair<int, int> fire_range;
double sigma_coeff;
coord_range target;
df::job_item_vector_id ammo_vector_id;
@ -320,6 +384,9 @@ static EngineInfo *find_engine(df::building *bld, bool create = false)
obj->hit_delay = obj->is_catapult ? 2 : -1;
obj->fire_range = get_engine_range(ebld, obj->quality);
// Base coefficients per engine type, plus 6% exponential bonus per quality level
obj->sigma_coeff = (obj->is_catapult ? 30.0 : 48.0) * pow(1.06, obj->quality);
obj->ammo_vector_id = job_item_vector_id::BOULDER;
obj->ammo_item_type = item_type::BOULDER;
@ -1434,38 +1501,29 @@ struct projectile_hook : df::proj_itemst {
if (debug_mode)
set_arrow_color(path.goal, COLOR_LIGHTRED);
// Dabbling always hit in 7x7 area
// Dabbling always hit in 11x11 area
if (skill < skill_rating::Novice)
{
fail_target.x += rng.random(7)-3;
fail_target.y += rng.random(7)-3;
fail_target.x += rng.random(11)-5;
fail_target.y += rng.random(11)-5;
aimAtPoint(engine, ProjectilePath(path.origin, fail_target));
return;
}
// Exact hit chance
float hit_chance = 1.04f - powf(0.8f, skill);
// Otherwise use a normal distribution to simulate errors
double sigma = point_distance(path.origin - path.goal) / (engine->sigma_coeff * skill);
if (rng.drandom() < hit_chance)
int dx = (int)round(random_error() * sigma);
int dy = (int)round(random_error() * sigma);
if (dx == 0 && dy == 0)
{
aimAtPoint(engine, path);
return;
}
// Otherwise perturb
if (skill <= skill_rating::Proficient)
{
// 5x5
fail_target.x += rng.random(5)-2;
fail_target.y += rng.random(5)-2;
}
else
{
// 3x3
int idx = rng.random(8);
fail_target.x += offsets[idx][0];
fail_target.y += offsets[idx][1];
}
fail_target.x += dx;
fail_target.y += dy;
ProjectilePath fail(path.origin, fail_target, path.fudge_delta, path.fudge_factor);
aimAtPoint(engine, fail);