#define VK_USE_PLATFORM_MACOS_MVK #include "vulkan/vulkan_core.h" #define GLFW_INCLUDE_VULKAN #include #define GLFW_EXPOSE_NATIVE_COCOA #include #define GLM_FORCE_RADIANS #define GLM_FORCE_DEPTH_ZERO_TO_ONE #include #include #include #include typedef struct QueueIndicesStruct { uint32_t graphics_family; uint32_t graphics_index; uint32_t present_family; uint32_t present_index; uint32_t transfer_family; uint32_t transfer_index; } QueueIndices; typedef struct QueuesStruct { VkQueue graphics; VkQueue present; VkQueue transfer; } Queues; typedef struct SwapchainDetailsStruct { VkSurfaceCapabilitiesKHR capabilities; VkSurfaceFormatKHR* formats; uint32_t formats_count; VkPresentModeKHR* present_modes; uint32_t present_modes_count; } SwapchainDetails; typedef struct SwapchainImagesStruct { VkImage* images; uint32_t count; } SwapchainImages; typedef struct AllocatedBufferStruct { VkBuffer buffer; VkDeviceMemory memory; } AllocatedBuffer; typedef struct VulkanContextStruct { VkInstance instance; VkDebugUtilsMessengerEXT debug_messenger; VkPhysicalDevice physical_device; QueueIndices queue_indices; VkDevice device; Queues queues; VkSurfaceKHR surface; SwapchainDetails swapchain_details; VkSwapchainKHR swapchain; VkSurfaceFormatKHR swapchain_format; VkPresentModeKHR swapchain_present_mode; VkExtent2D swapchain_extent; uint32_t swapchain_image_count; // Per image objects VkImage* swapchain_images; VkImageView* swapchain_image_views; VkFramebuffer* swapchain_framebuffers; uint32_t max_frames_in_flight; // Per frame objects VkCommandBuffer* swapchain_command_buffers; VkSemaphore* image_available_semaphores; VkSemaphore* render_finished_semaphores; VkFence* in_flight_fences; AllocatedBuffer* uniform_buffers; void** uniform_buffer_ptrs; VkDescriptorPool descriptor_pool; VkDescriptorSet* descriptor_sets; VkRenderPass render_pass; VkCommandPool graphics_command_pool; VkCommandPool transfer_command_pool; VkDescriptorSetLayout triangle_descriptor_set; VkPipelineLayout triangle_pipeline_layout; VkPipeline triangle_pipeline; AllocatedBuffer triangle_vertex_buffer; AllocatedBuffer triangle_index_buffer; uint32_t current_frame; } VulkanContext; struct Vertex{ vec2 pos; vec3 color; }; struct ShaderUBO { mat4 model; mat4 view; mat4 proj; }; const struct Vertex vertices[] = { {.pos = {-0.5f, -0.5f}, .color = {1.0f, 0.0f, 0.0f}}, {.pos = { 0.5f, -0.5f}, .color = {0.0f, 1.0f, 0.0f}}, {.pos = { 0.5f, 0.5f}, .color = {0.0f, 0.0f, 1.0f}}, {.pos = {-0.5f, 0.5f}, .color = {1.0f, 1.0f, 1.0f}}, }; const uint16_t indices[] = { 0, 1, 2, 2, 3, 0, }; const char * validation_layers[] = { "VK_LAYER_KHRONOS_validation", //"VK_LAYER_LUNARG_api_dump", //"VK_LAYER_KHRONOS_profiles", //"VK_LAYER_KHRONOS_synchronization2", "VK_LAYER_KHRONOS_shader_object", }; uint32_t validation_layer_count = sizeof(validation_layers) / sizeof(const char *); const char * instance_extensions[] = { VK_KHR_PORTABILITY_ENUMERATION_EXTENSION_NAME, VK_EXT_DEBUG_UTILS_EXTENSION_NAME, VK_MVK_MACOS_SURFACE_EXTENSION_NAME, VK_KHR_SURFACE_EXTENSION_NAME, }; uint32_t instance_extension_count = sizeof(instance_extensions) / sizeof(const char *); const char * device_extensions[] = { VK_KHR_SWAPCHAIN_EXTENSION_NAME, }; uint32_t device_extension_count = sizeof(device_extensions) / sizeof(const char *); void glfw_error(int error, const char* description) { fprintf(stderr, "GLFW_ERR: 0x%02x - %s\n", error, description); } VkVertexInputBindingDescription vertex_bindings[1]; VkVertexInputBindingDescription* vertex_binding_descriptions() { vertex_bindings[0].binding = 0; vertex_bindings[0].stride = sizeof(struct Vertex); vertex_bindings[0].inputRate = VK_VERTEX_INPUT_RATE_VERTEX; return vertex_bindings; } VkVertexInputAttributeDescription vertex_attributes[2]; VkVertexInputAttributeDescription* vertex_attribute_descriptions() { vertex_attributes[0].binding = 0; vertex_attributes[0].location = 0; vertex_attributes[0].format = VK_FORMAT_R32G32_SFLOAT; vertex_attributes[0].offset = offsetof(struct Vertex, pos); vertex_attributes[1].binding = 0; vertex_attributes[1].location = 1; vertex_attributes[1].format = VK_FORMAT_R32G32B32_SFLOAT; vertex_attributes[1].offset = offsetof(struct Vertex, color); return vertex_attributes; } GLFWwindow* init_window(int width, int height) { glfwInit(); glfwSetErrorCallback(glfw_error); glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API); glfwWindowHint(GLFW_RESIZABLE, GLFW_FALSE); GLFWwindow* window = glfwCreateWindow(width, height, "Vulkan window", 0, 0); return window; } bool check_validation_layers(const char ** layers, uint32_t num_layers) { uint32_t layer_count; VkResult result; result = vkEnumerateInstanceLayerProperties(&layer_count, 0); if(result != VK_SUCCESS) { return false; } VkLayerProperties* available_layers = malloc(sizeof(VkLayerProperties)*layer_count); result = vkEnumerateInstanceLayerProperties(&layer_count, available_layers); for(uint32_t i = 0; i < num_layers; i++) { bool found = false; for(uint32_t j = 0; j < layer_count; j++) { if(strcmp(layers[i], available_layers[j].layerName) == 0) { found = true; } } if(found == false) { free(available_layers); return false; } } free(available_layers); return true; } static VKAPI_ATTR VkBool32 VKAPI_CALL debug_callback( VkDebugUtilsMessageSeverityFlagBitsEXT severity, VkDebugUtilsMessageTypeFlagsEXT type, const VkDebugUtilsMessengerCallbackDataEXT* callback_data, void* user_data) { (void)severity; (void)type; (void)user_data; fprintf(stderr, "Validation layer: %s\n", callback_data->pMessage); return VK_FALSE; } VkDescriptorSet* create_descriptor_sets(VkDevice device, VkDescriptorSetLayout layout, VkDescriptorPool pool, AllocatedBuffer* uniform_buffers, uint32_t count) { VkDescriptorSetLayout* layouts = malloc(sizeof(VkDescriptorSetLayout)*count); if(layouts == 0) { return 0; } VkDescriptorSet* sets = malloc(sizeof(VkDescriptorSet)*count); if(sets == 0) { free(layouts); return 0; } for(uint32_t i = 0; i < count; i++) { layouts[i] = layout; } VkDescriptorSetAllocateInfo alloc_info = {}; alloc_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO; alloc_info.descriptorPool = pool; alloc_info.descriptorSetCount = count; alloc_info.pSetLayouts = layouts; VkResult result = vkAllocateDescriptorSets(device, &alloc_info, sets); free(layouts); if(result != VK_SUCCESS) { free(sets); return 0; } for(uint32_t i = 0; i < count; i++) { VkDescriptorBufferInfo buffer_info = {}; buffer_info.buffer = uniform_buffers[i].buffer; buffer_info.offset = 0; buffer_info.range = sizeof(struct ShaderUBO); VkWriteDescriptorSet descriptor_write = {}; descriptor_write.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; descriptor_write.dstSet = sets[i]; descriptor_write.dstBinding = 0; descriptor_write.dstArrayElement = 0; descriptor_write.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; descriptor_write.descriptorCount = 1; descriptor_write.pBufferInfo = &buffer_info; descriptor_write.pImageInfo = 0; descriptor_write.pTexelBufferView = 0; vkUpdateDescriptorSets(device, 1, &descriptor_write, 0, 0); } return sets; } VkDescriptorSetLayout create_descriptor_set_layout(VkDevice device) { VkDescriptorSetLayoutBinding layout_binding = {}; layout_binding.binding = 0; layout_binding.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; layout_binding.descriptorCount = 1; layout_binding.stageFlags = VK_SHADER_STAGE_VERTEX_BIT; layout_binding.pImmutableSamplers = 0; VkDescriptorSetLayoutCreateInfo layout_info = {}; layout_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO; layout_info.bindingCount = 1; layout_info.pBindings = &layout_binding; VkDescriptorSetLayout layout; VkResult result = vkCreateDescriptorSetLayout(device, &layout_info, 0, &layout); if(result != VK_SUCCESS) { return VK_NULL_HANDLE; } return layout; } VkSurfaceKHR create_surface_khr(VkInstance instance, GLFWwindow* window) { VkSurfaceKHR surface; VkResult result = glfwCreateWindowSurface(instance, window, 0, &surface); if(result != VK_SUCCESS) { return VK_NULL_HANDLE; } return surface; } VkPhysicalDevice get_best_physical_device(VkInstance instance) { VkPhysicalDevice device = VK_NULL_HANDLE; uint32_t device_count = 0; VkResult result; result = vkEnumeratePhysicalDevices(instance, &device_count, 0); if(result != VK_SUCCESS) { return VK_NULL_HANDLE; } VkPhysicalDevice* devices = malloc(sizeof(VkPhysicalDevice)*device_count); result = vkEnumeratePhysicalDevices(instance, &device_count, devices); if(result != VK_SUCCESS) { free(devices); return VK_NULL_HANDLE; } int top_score = -1; for(uint32_t i = 0; i < device_count; i++) { int score = 0; VkPhysicalDeviceProperties properties; vkGetPhysicalDeviceProperties(devices[i], &properties); VkPhysicalDeviceFeatures features; vkGetPhysicalDeviceFeatures(devices[i], &features); switch(properties.deviceType) { case VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU: score += 100; break; case VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU: score += 50; break; case VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU: score += 25; break; case VK_PHYSICAL_DEVICE_TYPE_CPU: score += 0; break; default: continue; } if(score > top_score) { top_score = score; device = devices[i]; } } free(devices); return device; } bool check_queue_indices(QueueIndices indices) { return ((indices.graphics_family != 0xFFFFFFFF) && (indices.present_family != 0xFFFFFFFF) && (indices.transfer_family != 0xFFFFFFFF)); } QueueIndices get_queue_indices(VkPhysicalDevice physical_device, VkSurfaceKHR surface) { QueueIndices indices = {}; indices.graphics_family = 0xFFFFFFFF; indices.graphics_index = 0xFFFFFFFF; indices.present_family = 0xFFFFFFFF; indices.present_index = 0xFFFFFFFF; indices.transfer_family = 0xFFFFFFFF; indices.transfer_index = 0xFFFFFFFF; uint32_t queue_family_count; vkGetPhysicalDeviceQueueFamilyProperties(physical_device, &queue_family_count, 0); VkQueueFamilyProperties* queue_families = malloc(sizeof(VkQueueFamilyProperties)*queue_family_count); vkGetPhysicalDeviceQueueFamilyProperties(physical_device, &queue_family_count, queue_families); for(uint32_t family_idx = 0; family_idx < queue_family_count; family_idx++) { VkBool32 present_support; vkGetPhysicalDeviceSurfaceSupportKHR(physical_device, family_idx, surface, &present_support); for(uint32_t queue_idx = 0; queue_idx < queue_families[family_idx].queueCount; queue_idx++) { if(((indices.graphics_family == 0xFFFFFFFF) || (indices.present_family == 0xFFFFFFFF) || (indices.present_family != indices.graphics_family)) && (queue_families[family_idx].queueFlags & VK_QUEUE_GRAPHICS_BIT) && (present_support == VK_TRUE)) { fprintf(stderr, "Selected %d:%d for graphics and present queues\n", family_idx, queue_idx); indices.graphics_family = family_idx; indices.graphics_index = queue_idx; indices.present_family = family_idx; indices.present_index = queue_idx; } else if((indices.graphics_family == 0xFFFFFFFF) && (queue_families[family_idx].queueFlags & VK_QUEUE_GRAPHICS_BIT)) { fprintf(stderr, "Selected %d:%d for graphics queue\n", family_idx, queue_idx); indices.graphics_family = family_idx; indices.graphics_index = queue_idx; } else if((indices.present_family == 0xFFFFFFFF) && (present_support == VK_TRUE)) { fprintf(stderr, "Selected %d:%d for present queue\n", family_idx, queue_idx); indices.present_family = family_idx; indices.present_index = queue_idx; } else if((indices.transfer_family == 0xFFFFFFFF) && (queue_families[family_idx].queueFlags & (VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT))) { fprintf(stderr, "Selected %d:%d for transfer queue\n", family_idx, queue_idx); indices.transfer_family = family_idx; indices.transfer_index = queue_idx; } } } free(queue_families); return indices; } VkDebugUtilsMessengerEXT create_debug_messenger(VkInstance instance) { VkDebugUtilsMessengerEXT debug_messenger; VkDebugUtilsMessengerCreateInfoEXT messenger_info = {}; messenger_info.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT; messenger_info.messageSeverity = VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT; messenger_info.messageType = VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_DEVICE_ADDRESS_BINDING_BIT_EXT; messenger_info.pfnUserCallback = debug_callback; messenger_info.pUserData = 0; PFN_vkCreateDebugUtilsMessengerEXT func = (PFN_vkCreateDebugUtilsMessengerEXT)vkGetInstanceProcAddr(instance, "vkCreateDebugUtilsMessengerEXT"); VkResult result; result = func(instance, &messenger_info, 0, &debug_messenger); if(result != VK_SUCCESS) { fprintf(stderr, "failed to create debug messenger\n"); return VK_NULL_HANDLE; } return debug_messenger; } VkDescriptorPool create_descriptor_pool(VkDevice device, uint32_t size) { VkDescriptorPoolSize pool_size = {}; pool_size.type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; pool_size.descriptorCount = size; VkDescriptorPoolCreateInfo pool_info = {}; pool_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO; pool_info.poolSizeCount = 1; pool_info.pPoolSizes = &pool_size; pool_info.maxSets = size; VkDescriptorPool pool; VkResult result = vkCreateDescriptorPool(device, &pool_info, 0, &pool); if(result != VK_SUCCESS) { return VK_NULL_HANDLE; } return pool; } VkInstance create_instance() { VkInstance instance; if(check_validation_layers(validation_layers, validation_layer_count) == false) { fprintf(stderr, "requested validation layers not supported"); return VK_NULL_HANDLE; } VkApplicationInfo app_info = {}; app_info.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO; app_info.pApplicationName = "spacegame"; app_info.applicationVersion = VK_MAKE_VERSION(0, 0, 1); app_info.pEngineName = "spacegame"; app_info.engineVersion = VK_MAKE_VERSION(0, 0, 1); app_info.apiVersion = VK_API_VERSION_1_3; VkInstanceCreateInfo instance_info = {}; instance_info.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO; instance_info.pApplicationInfo = &app_info; instance_info.enabledLayerCount = validation_layer_count; instance_info.ppEnabledLayerNames = validation_layers; uint32_t glfwExtensionCount = 0; const char** glfwExtensions; glfwExtensions = glfwGetRequiredInstanceExtensions(&glfwExtensionCount); const char** requested_extensions = malloc(sizeof(char*)*(glfwExtensionCount + instance_extension_count)); for (uint32_t i = 0; i < glfwExtensionCount; i++) { requested_extensions[i] = glfwExtensions[i]; } for (uint32_t i = 0; i < instance_extension_count; i++) { requested_extensions[glfwExtensionCount + i] = instance_extensions[i]; } instance_info.enabledExtensionCount = glfwExtensionCount + instance_extension_count; instance_info.ppEnabledExtensionNames = requested_extensions; instance_info.flags |= VK_INSTANCE_CREATE_ENUMERATE_PORTABILITY_BIT_KHR; VkResult result = vkCreateInstance(&instance_info, 0, &instance); if(result != VK_SUCCESS) { fprintf(stderr, "vkCreateInstance: 0x%02x\n", result); return VK_NULL_HANDLE; } free(requested_extensions); return instance; } VkDevice create_logical_device(VkPhysicalDevice physical_device, QueueIndices queue_indices) { VkDevice device; uint32_t unique_families[3] = {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF}; uint32_t unique_family_queues[3] = {0, 0, 0}; uint32_t unique_family_count = 0; uint32_t queue_family[] = {queue_indices.transfer_family, queue_indices.graphics_family, queue_indices.present_family}; uint32_t unique_queue_count = 3; if((queue_indices.graphics_family == queue_indices.present_family) && (queue_indices.graphics_index == queue_indices.present_index)) { unique_queue_count = 2; } for(uint32_t queue_idx = 0; queue_idx < unique_queue_count; queue_idx++) { uint32_t idx = 0xFFFFFFFF; for(uint32_t check_idx = 0; check_idx < unique_family_count; check_idx++) { if(queue_family[queue_idx] == unique_families[check_idx]) { idx = check_idx; break; } } if(idx == 0xFFFFFFFF) { unique_families[unique_family_count] = queue_family[queue_idx]; unique_family_queues[unique_family_count] += 1; unique_family_count += 1; } else { unique_family_queues[idx] += 1; } } VkDeviceQueueCreateInfo queue_create_info[3] = {}; float default_queue_priority = 1.0f; for(uint32_t i = 0; i < unique_family_count; i++) { queue_create_info[i].sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; queue_create_info[i].queueFamilyIndex = unique_families[i]; queue_create_info[i].queueCount = unique_family_queues[i]; queue_create_info[i].pQueuePriorities = &default_queue_priority; } VkPhysicalDeviceFeatures device_features = {}; VkDeviceCreateInfo device_create_info = {}; device_create_info.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO; device_create_info.pQueueCreateInfos = queue_create_info; device_create_info.queueCreateInfoCount = unique_family_count; device_create_info.pEnabledFeatures = &device_features; device_create_info.enabledExtensionCount = device_extension_count; device_create_info.ppEnabledExtensionNames = device_extensions; device_create_info.enabledLayerCount = validation_layer_count; device_create_info.ppEnabledLayerNames = validation_layers; VkResult result = vkCreateDevice(physical_device, &device_create_info, 0, &device); if(result != VK_SUCCESS) { return VK_NULL_HANDLE; } return device; } struct MaybeSwapchainDetails { bool valid; SwapchainDetails details; }; struct MaybeSwapchainDetails get_swapchain_details(VkPhysicalDevice physical_device, VkSurfaceKHR surface) { struct MaybeSwapchainDetails ret = {}; ret.valid = false; ret.details.formats = 0; ret.details.present_modes = 0; VkResult result; result = vkGetPhysicalDeviceSurfaceCapabilitiesKHR(physical_device, surface, &ret.details.capabilities); if(result != VK_SUCCESS) { return ret; } result = vkGetPhysicalDeviceSurfaceFormatsKHR(physical_device, surface, &ret.details.formats_count, 0); if(result != VK_SUCCESS) { return ret; } ret.details.formats = malloc(sizeof(VkSurfaceFormatKHR)*ret.details.formats_count); result = vkGetPhysicalDeviceSurfaceFormatsKHR(physical_device, surface, &ret.details.formats_count, ret.details.formats); if(result != VK_SUCCESS) { free(ret.details.formats); return ret; } result = vkGetPhysicalDeviceSurfacePresentModesKHR(physical_device, surface, &ret.details.present_modes_count, 0); if(result != VK_SUCCESS) { free(ret.details.formats); return ret; } ret.details.present_modes = malloc(sizeof(VkPresentModeKHR)*ret.details.present_modes_count); result = vkGetPhysicalDeviceSurfacePresentModesKHR(physical_device, surface, &ret.details.present_modes_count, ret.details.present_modes); if(result != VK_SUCCESS) { free(ret.details.formats); free(ret.details.present_modes); return ret; } ret.valid = true; return ret; } VkSurfaceFormatKHR choose_swapchain_format(SwapchainDetails swapchain_details) { for(uint32_t i = 0; i < swapchain_details.formats_count; i++) { VkSurfaceFormatKHR format = swapchain_details.formats[i]; if(format.format == VK_FORMAT_B8G8R8A8_SRGB && format.colorSpace == VK_COLOR_SPACE_SRGB_NONLINEAR_KHR) { return format; } } return swapchain_details.formats[0]; } VkPresentModeKHR choose_present_mode(SwapchainDetails swapchain_details) { for(uint32_t i = 0; i < swapchain_details.present_modes_count; i++) { if(swapchain_details.present_modes[i] == VK_PRESENT_MODE_MAILBOX_KHR) { return VK_PRESENT_MODE_MAILBOX_KHR; } } return VK_PRESENT_MODE_FIFO_KHR; } VkExtent2D choose_swapchain_extent(SwapchainDetails swapchain_details) { return swapchain_details.capabilities.currentExtent; } VkSwapchainKHR create_swapchain(VkDevice device, VkSurfaceFormatKHR format, VkPresentModeKHR present_mode, VkExtent2D extent, VkSurfaceKHR surface, VkSurfaceCapabilitiesKHR capabilities, QueueIndices indices, VkSwapchainKHR old_swapchain) { uint32_t image_count = capabilities.minImageCount + 1; uint32_t max_images = capabilities.maxImageCount; if((max_images > 0) && (image_count > max_images)) { image_count = max_images; } VkSwapchainCreateInfoKHR swapchain_info = {}; swapchain_info.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR; swapchain_info.surface = surface; swapchain_info.minImageCount = image_count; swapchain_info.imageFormat = format.format; swapchain_info.imageColorSpace = format.colorSpace; swapchain_info.imageExtent = extent; swapchain_info.imageArrayLayers = 1; swapchain_info.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; uint32_t queue_families[2] = {indices.graphics_family, indices.present_index}; if(indices.graphics_family != indices.present_family) { swapchain_info.imageSharingMode = VK_SHARING_MODE_CONCURRENT; swapchain_info.queueFamilyIndexCount = 2; swapchain_info.pQueueFamilyIndices = queue_families; } else { swapchain_info.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE; swapchain_info.queueFamilyIndexCount = 0; swapchain_info.pQueueFamilyIndices = 0; } swapchain_info.preTransform = capabilities.currentTransform; swapchain_info.compositeAlpha = VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR; swapchain_info.presentMode = present_mode; swapchain_info.clipped = VK_TRUE; swapchain_info.oldSwapchain = old_swapchain; VkSwapchainKHR swapchain; VkResult result; result = vkCreateSwapchainKHR(device, &swapchain_info, 0, &swapchain); if(result != VK_SUCCESS) { return VK_NULL_HANDLE; } return swapchain; } SwapchainImages get_swapchain_images(VkDevice device, VkSwapchainKHR swapchain) { SwapchainImages images; images.images = 0; images.count = 0; VkResult result; result = vkGetSwapchainImagesKHR(device, swapchain, &images.count, 0); if(result != VK_SUCCESS) { images.count = 0; return images; } images.images = malloc(sizeof(VkImage)*images.count); if(images.images == 0) { images.count = 0; return images; } result = vkGetSwapchainImagesKHR(device, swapchain, &images.count, images.images); if(result != VK_SUCCESS) { images.count = 0; return images; } return images; } VkImageView* create_image_views(VkDevice device, uint32_t image_count, VkImage* images, VkSurfaceFormatKHR format) { VkImageView* image_views = malloc(sizeof(VkImageView)*image_count); if(image_views == 0) { return 0; } for(uint32_t i = 0; i < image_count; i++) { VkImageViewCreateInfo view_info = {}; view_info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; view_info.image = images[i]; view_info.viewType = VK_IMAGE_VIEW_TYPE_2D; view_info.format = format.format; view_info.components.r = VK_COMPONENT_SWIZZLE_IDENTITY; view_info.components.g = VK_COMPONENT_SWIZZLE_IDENTITY; view_info.components.b = VK_COMPONENT_SWIZZLE_IDENTITY; view_info.components.a = VK_COMPONENT_SWIZZLE_IDENTITY; view_info.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; view_info.subresourceRange.baseMipLevel = 0; view_info.subresourceRange.levelCount = 1; view_info.subresourceRange.baseArrayLayer = 0; view_info.subresourceRange.layerCount = 1; VkResult result = vkCreateImageView(device, &view_info, 0, &image_views[i]); if(result != VK_SUCCESS) { free(image_views); return 0; } } return image_views; } VkFramebuffer* create_swapchain_framebuffers(VkDevice device, uint32_t image_count, VkImageView* image_views, VkRenderPass render_pass, VkExtent2D extent) { VkFramebuffer* framebuffers = malloc(sizeof(VkFramebuffer)*image_count); if(framebuffers == 0) { return 0; } for(uint32_t i = 0; i < image_count; i++) { VkImageView attachments[] = { image_views[i], }; VkFramebufferCreateInfo framebuffer_info = {}; framebuffer_info.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO; framebuffer_info.renderPass = render_pass; framebuffer_info.attachmentCount = 1; framebuffer_info.pAttachments = attachments; framebuffer_info.width = extent.width; framebuffer_info.height = extent.height; framebuffer_info.layers = 1; VkResult result = vkCreateFramebuffer(device, &framebuffer_info, 0, &framebuffers[i]); if(result != VK_SUCCESS) { free(framebuffers); return 0; } } return framebuffers; } VkShaderModule create_shader_module(VkDevice device, const char * code, uint32_t code_size) { VkShaderModuleCreateInfo shader_info = {}; shader_info.sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO_EXT; shader_info.codeSize = code_size; shader_info.pCode = (uint32_t*)code; VkShaderModule shader; VkResult result; result = vkCreateShaderModule(device, &shader_info, 0, &shader); if(result != VK_SUCCESS) { return VK_NULL_HANDLE; } return shader; } VkShaderModule load_shader_file(uint32_t buffer_size, const char* path, VkDevice device) { FILE* file; file = fopen(path, "r"); if(file == 0) { return VK_NULL_HANDLE; } char * buffer = malloc(buffer_size); if(buffer == 0) { return VK_NULL_HANDLE; } size_t read = fread(buffer, 1, buffer_size, file); VkShaderModule shader = create_shader_module(device, buffer, read); free(buffer); return shader; } VkRenderPass create_render_pass(VkDevice device, VkSurfaceFormatKHR format) { VkAttachmentDescription color_attachment; color_attachment.format = format.format; color_attachment.samples = VK_SAMPLE_COUNT_1_BIT; color_attachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; color_attachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE; color_attachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; color_attachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_STORE; color_attachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; color_attachment.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; VkAttachmentReference color_attachment_ref = {}; color_attachment_ref.attachment = 0; color_attachment_ref.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; VkSubpassDescription subpass = {}; subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; subpass.colorAttachmentCount = 1; subpass.pColorAttachments = &color_attachment_ref; VkSubpassDependency dependency = {}; dependency.srcSubpass = VK_SUBPASS_EXTERNAL; dependency.dstSubpass = 0; dependency.srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; dependency.srcAccessMask = 0; dependency.dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; dependency.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; VkRenderPassCreateInfo render_info = {}; render_info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO; render_info.attachmentCount = 1; render_info.pAttachments = &color_attachment; render_info.subpassCount = 1; render_info.pSubpasses = &subpass; render_info.dependencyCount = 1; render_info.pDependencies = &dependency; VkRenderPass render_pass; VkResult result = vkCreateRenderPass(device, &render_info, 0, &render_pass); if(result != VK_SUCCESS) { return VK_NULL_HANDLE; } return render_pass; } VkPipelineLayout create_pipeline_layout(VkDevice device, uint32_t set_count, VkDescriptorSetLayout* sets, uint32_t pcr_count, VkPushConstantRange* pcrs) { VkPipelineLayout layout; VkPipelineLayoutCreateInfo layout_info = {}; layout_info.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO; layout_info.setLayoutCount = set_count; layout_info.pSetLayouts = sets; layout_info.pushConstantRangeCount = pcr_count; layout_info.pPushConstantRanges = pcrs; VkResult result; result = vkCreatePipelineLayout(device, &layout_info, 0, &layout); if(result != VK_SUCCESS) { return VK_NULL_HANDLE; } return layout; } uint32_t find_memory_type(VkPhysicalDevice physical_device, uint32_t type_filter, VkMemoryPropertyFlags properties) { VkPhysicalDeviceMemoryProperties memory_properties; vkGetPhysicalDeviceMemoryProperties(physical_device, &memory_properties); for(uint32_t i = 0; i < memory_properties.memoryTypeCount; i++) { if ((type_filter & (1 << i)) && (memory_properties.memoryTypes[i].propertyFlags & properties) == properties) { return i; } } return 0xFFFFFFFF; } AllocatedBuffer allocate_buffer(VkPhysicalDevice physical_device, VkDevice device, VkDeviceSize size, VkBufferUsageFlags usage, VkMemoryPropertyFlags properties) { AllocatedBuffer ret = {}; ret.memory = VK_NULL_HANDLE; ret.buffer = VK_NULL_HANDLE; VkBufferCreateInfo buffer_info = {}; buffer_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; buffer_info.size = size; buffer_info.usage = usage; buffer_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE; VkResult result = vkCreateBuffer(device, &buffer_info, 0, &ret.buffer); if(result != VK_SUCCESS) { ret.buffer = VK_NULL_HANDLE; ret.memory = VK_NULL_HANDLE; return ret; } VkMemoryRequirements memory_requirements; vkGetBufferMemoryRequirements(device, ret.buffer, &memory_requirements); VkMemoryAllocateInfo alloc_info = {}; alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; alloc_info.allocationSize = memory_requirements.size; alloc_info.memoryTypeIndex = find_memory_type(physical_device, memory_requirements.memoryTypeBits, properties); result = vkAllocateMemory(device, &alloc_info, 0, &ret.memory); if(result != VK_SUCCESS) { vkDestroyBuffer(device, ret.buffer, 0); ret.buffer = VK_NULL_HANDLE; ret.memory = VK_NULL_HANDLE; return ret; } result = vkBindBufferMemory(device, ret.buffer, ret.memory, 0); if(result != VK_SUCCESS) { vkDestroyBuffer(device, ret.buffer, 0); ret.buffer = VK_NULL_HANDLE; ret.memory = VK_NULL_HANDLE; return ret; } return ret; } void deallocate_buffer(VkDevice device, AllocatedBuffer buffer) { vkDestroyBuffer(device, buffer.buffer, 0); vkFreeMemory(device, buffer.memory, 0); }; AllocatedBuffer* allocate_buffers(VkPhysicalDevice physical_device, VkDevice device, VkDeviceSize size, VkBufferUsageFlags usage, VkMemoryPropertyFlags properties, uint32_t count) { AllocatedBuffer* buffers = malloc(sizeof(AllocatedBuffer)*count); if(buffers == 0) { return 0; } for(uint32_t i = 0; i < count; i++) { buffers[i] = allocate_buffer(physical_device, device, size, usage, properties); if(buffers[i].memory == VK_NULL_HANDLE) { for(uint32_t j = 0; j < i; j++) { deallocate_buffer(device, buffers[i]); } free(buffers); return 0; } } return buffers; } VkResult command_copy_buffers(VkDevice device, VkCommandPool transfer_pool, VkQueue transfer_queue, VkBuffer source, VkBuffer dest, VkDeviceSize size) { VkCommandBufferAllocateInfo command_info = {}; command_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO; command_info.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; command_info.commandPool = transfer_pool; command_info.commandBufferCount = 1; VkCommandBuffer command_buffer; VkResult result = vkAllocateCommandBuffers(device, &command_info, &command_buffer); if(result != VK_SUCCESS) { return result; } VkCommandBufferBeginInfo begin_info = {}; begin_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; begin_info.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT; result = vkBeginCommandBuffer(command_buffer, &begin_info); if(result != VK_SUCCESS) { vkFreeCommandBuffers(device, transfer_pool, 1, &command_buffer); return result; } VkBufferCopy copy_region = {}; copy_region.srcOffset = 0; copy_region.dstOffset = 0; copy_region.size = size; vkCmdCopyBuffer(command_buffer, source, dest, 1, ©_region); result = vkEndCommandBuffer(command_buffer); if(result != VK_SUCCESS) { vkFreeCommandBuffers(device, transfer_pool, 1, &command_buffer); return result; } VkSubmitInfo submit_info = {}; submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; submit_info.commandBufferCount = 1; submit_info.pCommandBuffers = &command_buffer; result = vkQueueSubmit(transfer_queue, 1, &submit_info, 0); if(result != VK_SUCCESS) { vkFreeCommandBuffers(device, transfer_pool, 1, &command_buffer); return result; } result = vkQueueWaitIdle(transfer_queue); if(result != VK_SUCCESS) { vkFreeCommandBuffers(device, transfer_pool, 1, &command_buffer); return result; } vkFreeCommandBuffers(device, transfer_pool, 1, &command_buffer); return VK_SUCCESS; } AllocatedBuffer create_populated_buffer(VkPhysicalDevice physical_device, VkDevice device, void* data, VkDeviceSize size, VkCommandPool transfer_pool, VkQueue transfer_queue, VkBufferUsageFlags usage) { AllocatedBuffer staging_buffer = {}; AllocatedBuffer vertex_buffer = {}; staging_buffer = allocate_buffer(physical_device, device, size, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT); if(staging_buffer.memory == VK_NULL_HANDLE) { return vertex_buffer; } void* buffer_data; VkResult result = vkMapMemory(device, staging_buffer.memory, 0, size, 0, &buffer_data); if(result != VK_SUCCESS) { deallocate_buffer(device, staging_buffer); return vertex_buffer; } memcpy(buffer_data, data, size); vkUnmapMemory(device, staging_buffer.memory); vertex_buffer = allocate_buffer(physical_device, device, size, VK_BUFFER_USAGE_TRANSFER_DST_BIT | usage, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); if(vertex_buffer.memory == VK_NULL_HANDLE) { deallocate_buffer(device, staging_buffer); return vertex_buffer; } result = command_copy_buffers(device, transfer_pool, transfer_queue, staging_buffer.buffer, vertex_buffer.buffer, size); if(result != VK_SUCCESS) { deallocate_buffer(device, staging_buffer); deallocate_buffer(device, vertex_buffer); vertex_buffer.buffer = VK_NULL_HANDLE; vertex_buffer.memory = VK_NULL_HANDLE; return vertex_buffer; } return vertex_buffer; } VkPipeline create_graphics_pipeline(VkDevice device, VkExtent2D extent, VkPipelineLayout layout, VkRenderPass render_pass) { VkShaderModule vert_shader = load_shader_file(2048, "shader_src/basic.vert.spv", device); VkShaderModule frag_shader = load_shader_file(2048, "shader_src/basic.frag.spv", device); VkPipelineShaderStageCreateInfo shader_stages[2] = {}; shader_stages[0].sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO_EXT; shader_stages[0].stage = VK_SHADER_STAGE_VERTEX_BIT; shader_stages[0].module = vert_shader; shader_stages[0].pName = "main"; shader_stages[1].sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO_EXT; shader_stages[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT; shader_stages[1].module = frag_shader; shader_stages[1].pName = "main"; VkDynamicState dynamic_states[] = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR, }; uint32_t dynamic_state_count = sizeof(dynamic_states)/sizeof(VkDynamicState); VkPipelineDynamicStateCreateInfo dynamic_info = {}; dynamic_info.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO; dynamic_info.dynamicStateCount = dynamic_state_count; dynamic_info.pDynamicStates = dynamic_states; VkPipelineVertexInputStateCreateInfo vertex_input_info = {}; vertex_input_info.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO; vertex_input_info.vertexBindingDescriptionCount = 1; vertex_input_info.pVertexBindingDescriptions = vertex_binding_descriptions(); vertex_input_info.vertexAttributeDescriptionCount = 2; vertex_input_info.pVertexAttributeDescriptions = vertex_attribute_descriptions(); VkPipelineInputAssemblyStateCreateInfo input_assemvly_info = {}; input_assemvly_info.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO; input_assemvly_info.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; input_assemvly_info.primitiveRestartEnable = VK_FALSE; VkViewport viewport = {}; viewport.x = 0.0f; viewport.y = 0.0f; viewport.width = (float)(extent.width); viewport.height = (float)(extent.height); viewport.minDepth = 0.0f; viewport.maxDepth = 1.0f; VkRect2D scissor = {}; VkOffset2D scissor_offset = {.x = 0, .y = 0}; scissor.offset = scissor_offset; scissor.extent = extent; VkPipelineViewportStateCreateInfo viewport_state = {}; viewport_state.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO; viewport_state.viewportCount = 1; viewport_state.pViewports = &viewport; viewport_state.scissorCount = 1; viewport_state.pScissors = &scissor; VkPipelineRasterizationStateCreateInfo raster_info = {}; raster_info.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO; raster_info.depthClampEnable = VK_FALSE; raster_info.rasterizerDiscardEnable = VK_FALSE; raster_info.polygonMode = VK_POLYGON_MODE_FILL; raster_info.lineWidth = 1.0f; raster_info.cullMode = VK_CULL_MODE_BACK_BIT; raster_info.frontFace = VK_FRONT_FACE_CLOCKWISE; raster_info.depthBiasEnable = VK_FALSE; raster_info.depthBiasConstantFactor = 0.0f; raster_info.depthBiasClamp = 0.0f; raster_info.depthBiasSlopeFactor = 0.0f; VkPipelineMultisampleStateCreateInfo multisample_info = {}; multisample_info.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO; multisample_info.sampleShadingEnable = VK_FALSE; multisample_info.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT; multisample_info.minSampleShading = 1.0f; multisample_info.pSampleMask = 0; multisample_info.alphaToCoverageEnable = VK_FALSE; multisample_info.alphaToOneEnable = VK_FALSE; VkPipelineColorBlendAttachmentState color_blend_attachment = {}; color_blend_attachment.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT; color_blend_attachment.blendEnable = VK_TRUE; color_blend_attachment.srcColorBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA; color_blend_attachment.dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA; color_blend_attachment.colorBlendOp = VK_BLEND_OP_ADD; color_blend_attachment.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE; color_blend_attachment.dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO; color_blend_attachment.alphaBlendOp = VK_BLEND_OP_ADD; VkPipelineColorBlendStateCreateInfo color_blend_info = {}; color_blend_info.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO; color_blend_info.logicOpEnable = VK_FALSE; color_blend_info.logicOp = VK_LOGIC_OP_COPY; color_blend_info.attachmentCount = 1; color_blend_info.pAttachments = &color_blend_attachment; color_blend_info.blendConstants[0] = 0.0f; color_blend_info.blendConstants[1] = 0.0f; color_blend_info.blendConstants[2] = 0.0f; color_blend_info.blendConstants[3] = 0.0f; VkGraphicsPipelineCreateInfo pipeline_info = {}; pipeline_info.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO; pipeline_info.stageCount = 2; pipeline_info.pStages = shader_stages; pipeline_info.pVertexInputState = &vertex_input_info; pipeline_info.pInputAssemblyState = &input_assemvly_info; pipeline_info.pViewportState = &viewport_state; pipeline_info.pRasterizationState = &raster_info; pipeline_info.pDepthStencilState = 0; pipeline_info.pColorBlendState = &color_blend_info; pipeline_info.pDynamicState = &dynamic_info; pipeline_info.layout = layout; pipeline_info.renderPass = render_pass; pipeline_info.subpass = 0; pipeline_info.basePipelineHandle = VK_NULL_HANDLE; pipeline_info.basePipelineIndex = -1; VkPipeline pipeline; VkResult result = vkCreateGraphicsPipelines(device, VK_NULL_HANDLE, 1, &pipeline_info, 0, &pipeline); if(result != VK_SUCCESS) { return VK_NULL_HANDLE; } return pipeline; } VkCommandPool create_command_pool(VkDevice device, uint32_t queue_family) { VkCommandPoolCreateInfo pool_info = {}; pool_info.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO; pool_info.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT; pool_info.queueFamilyIndex = queue_family; VkCommandPool command_pool; VkResult result = vkCreateCommandPool(device, &pool_info, 0, &command_pool); if(result != VK_SUCCESS) { return VK_NULL_HANDLE; } return command_pool; } VkResult record_command_buffer_triangle(VkCommandBuffer command_buffer, uint32_t image_index, VkRenderPass render_pass, VkFramebuffer* framebuffers, VkExtent2D extent, VkPipeline graphics_pipeline, VkPipelineLayout pipeline_layout, VkDescriptorSet descriptor_set, VkBuffer vertex_buffer, VkBuffer index_buffer, uint32_t num_vertices) { VkCommandBufferBeginInfo begin_info = {}; begin_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; begin_info.flags = 0; begin_info.pInheritanceInfo = 0; VkResult result = vkBeginCommandBuffer(command_buffer, &begin_info); if(result != VK_SUCCESS) { return result; } VkRenderPassBeginInfo render_pass_info = {}; render_pass_info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO; render_pass_info.renderPass = render_pass; render_pass_info.framebuffer = framebuffers[image_index]; VkOffset2D render_offset = {.x = 0, .y = 0}; render_pass_info.renderArea.offset = render_offset; render_pass_info.renderArea.extent = extent; VkClearValue clear_color = {{{0.0f, 0.0f, 0.0f, 1.0f}}}; render_pass_info.clearValueCount = 1; render_pass_info.pClearValues = &clear_color; vkCmdBeginRenderPass(command_buffer, &render_pass_info, VK_SUBPASS_CONTENTS_INLINE); vkCmdBindPipeline(command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, graphics_pipeline); VkBuffer vertex_buffers[] = {vertex_buffer}; VkDeviceSize offsets[] = {0}; vkCmdBindVertexBuffers(command_buffer, 0, 1, vertex_buffers, offsets); vkCmdBindIndexBuffer(command_buffer, index_buffer, 0, VK_INDEX_TYPE_UINT16); VkViewport viewport = {}; viewport.x = 0.0f; viewport.y = 0.0f; viewport.width = (float)(extent.width); viewport.height = (float)(extent.height); viewport.minDepth = 0.0f; viewport.maxDepth = 1.0f; vkCmdSetViewport(command_buffer, 0, 1, &viewport); VkRect2D scissor = {}; VkOffset2D scissor_offset = {.x = 0.0f, .y = 0.0f}; scissor.offset = scissor_offset; scissor.extent = extent; vkCmdSetScissor(command_buffer, 0, 1, &scissor); vkCmdBindDescriptorSets(command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline_layout, 0, 1, &descriptor_set, 0, 0); vkCmdDrawIndexed(command_buffer, num_vertices, 1, 0, 0, 0); vkCmdEndRenderPass(command_buffer); return vkEndCommandBuffer(command_buffer); } VkCommandBuffer* create_command_buffers(VkDevice device, VkCommandPool command_pool, uint32_t image_count) { VkCommandBufferAllocateInfo alloc_info = {}; alloc_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO; alloc_info.commandPool = command_pool; alloc_info.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; alloc_info.commandBufferCount = image_count; VkCommandBuffer* command_buffers = malloc(sizeof(VkCommandBuffer)*image_count); if(command_buffers == 0) { return 0; } VkResult result = vkAllocateCommandBuffers(device, &alloc_info, command_buffers); if(result != VK_SUCCESS) { return VK_NULL_HANDLE; } return command_buffers; } VkSemaphore* create_semaphores(VkDevice device, VkSemaphoreCreateFlags flags, uint32_t count) { VkSemaphore* semaphores = malloc(sizeof(VkSemaphore)*count); if(semaphores == 0) { return 0; } VkSemaphoreCreateInfo semaphore_info = {}; semaphore_info.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO; semaphore_info.flags = flags; for(uint32_t i = 0; i < count; i++) { VkResult result = vkCreateSemaphore(device, &semaphore_info, 0, &semaphores[i]); if(result != VK_SUCCESS) { free(semaphores); return 0; } } return semaphores; } VkFence* create_fences(VkDevice device, VkFenceCreateFlags flags, uint32_t count) { VkFence* fences = malloc(sizeof(VkFence)*count); if(fences == 0) { return 0; } VkFenceCreateInfo fence_info = {}; fence_info.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO; fence_info.flags = flags; for(uint32_t i = 0; i < count; i++) { VkResult result = vkCreateFence(device, &fence_info, 0, &fences[i]); if(result != VK_SUCCESS) { free(fences); return 0; } } return fences; } VulkanContext* init_vulkan(GLFWwindow* window, uint32_t max_frames_in_flight) { VulkanContext* context = (VulkanContext*)malloc(sizeof(VulkanContext)); VkInstance instance = create_instance(); if(instance == VK_NULL_HANDLE) { fprintf(stderr, "failed to initialize vulkan instance\n"); return 0; } else { context->instance = instance; } VkDebugUtilsMessengerEXT debug_messenger = create_debug_messenger(context->instance); if(debug_messenger == VK_NULL_HANDLE) { fprintf(stderr, "failed to initialize vulkan debug messenger\n"); return 0; } else { context->debug_messenger = debug_messenger; } VkPhysicalDevice physical_device = get_best_physical_device(context->instance); if(physical_device == VK_NULL_HANDLE) { fprintf(stderr, "failed to pick vulkan physical device\n"); return 0; } else { context->physical_device = physical_device; } VkSurfaceKHR surface = create_surface_khr(context->instance, window); if(surface == VK_NULL_HANDLE) { fprintf(stderr, "failed to create vulkan surface\n"); return 0; } else { context->surface = surface; } QueueIndices queue_indices = get_queue_indices(context->physical_device, context->surface); if(check_queue_indices(queue_indices) == false) { fprintf(stderr, "failed to get vulkan queue indices\n"); return 0; } else { context->queue_indices = queue_indices; } VkDevice device = create_logical_device(context->physical_device, context->queue_indices); if(device == VK_NULL_HANDLE) { fprintf(stderr, "failed to create vulkan logical device\n"); return 0; } else { context->device = device; } vkGetDeviceQueue(device, context->queue_indices.graphics_family, context->queue_indices.graphics_index, &context->queues.graphics); vkGetDeviceQueue(device, context->queue_indices.present_family, context->queue_indices.present_index, &context->queues.present); vkGetDeviceQueue(device, context->queue_indices.transfer_family, context->queue_indices.transfer_index, &context->queues.transfer); struct MaybeSwapchainDetails maybe_details = get_swapchain_details(context->physical_device, context->surface); if(maybe_details.valid == false) { fprintf(stderr, "failed to create vulkan logical device\n"); return 0; } else { context->swapchain_details = maybe_details.details; } context->swapchain_format = choose_swapchain_format(context->swapchain_details); context->swapchain_present_mode = choose_present_mode(context->swapchain_details); context->swapchain_extent = choose_swapchain_extent(context->swapchain_details); VkSwapchainKHR swapchain = create_swapchain(context->device, context->swapchain_format, context->swapchain_present_mode, context->swapchain_extent, context->surface, context->swapchain_details.capabilities, context->queue_indices, VK_NULL_HANDLE); if(swapchain == VK_NULL_HANDLE) { fprintf(stderr, "failed to create vulkan swapchain\n"); return 0; } else { context->swapchain = swapchain; } SwapchainImages swapchain_images = get_swapchain_images(context->device, context->swapchain); if(swapchain_images.count == 0) { fprintf(stderr, "failed to get vulkan swapchain images\n"); return 0; } else { context->swapchain_image_count = swapchain_images.count; context->swapchain_images = swapchain_images.images; } VkImageView* image_views = create_image_views(context->device, context->swapchain_image_count, context->swapchain_images, context->swapchain_format); if(image_views == 0) { fprintf(stderr, "failed to create vulkan image views\n"); return 0; } else { context->swapchain_image_views = image_views; } VkRenderPass render_pass = create_render_pass(context->device, context->swapchain_format); if(render_pass == VK_NULL_HANDLE) { fprintf(stderr, "failed to create vulkan render pass\n"); return 0; } else { context->render_pass = render_pass; } VkFramebuffer* framebuffers = create_swapchain_framebuffers(context->device, context->swapchain_image_count, context->swapchain_image_views, context->render_pass, context->swapchain_extent); if(framebuffers == 0) { fprintf(stderr, "failed to create vulkan framebuffers\n"); return 0; } else { context->swapchain_framebuffers = framebuffers; } VkCommandPool graphics_command_pool = create_command_pool(context->device, context->queue_indices.graphics_family); if(graphics_command_pool == VK_NULL_HANDLE) { fprintf(stderr, "failed to create vulkan graphics command pool"); return 0; } else { context->graphics_command_pool = graphics_command_pool; } VkCommandPool transfer_command_pool = create_command_pool(context->device, context->queue_indices.transfer_family); if(transfer_command_pool == VK_NULL_HANDLE) { fprintf(stderr, "failed to create vulkan transfer command pool"); return 0; } else { context->transfer_command_pool = transfer_command_pool; } context->max_frames_in_flight = max_frames_in_flight; VkCommandBuffer* swapchain_command_buffers = create_command_buffers(context->device, context->graphics_command_pool, max_frames_in_flight); if(swapchain_command_buffers == VK_NULL_HANDLE) { fprintf(stderr, "failed to create vulkan swapchain command buffer\n"); return 0; } else { context->swapchain_command_buffers = swapchain_command_buffers; } VkSemaphore* ia_semaphores = create_semaphores(context->device, 0, max_frames_in_flight); if(ia_semaphores == 0) { fprintf(stderr, "failed to create vulkan image available semaphores\n"); return 0; } else { context->image_available_semaphores = ia_semaphores; } VkSemaphore* rf_semaphores = create_semaphores(context->device, 0, max_frames_in_flight); if(rf_semaphores == 0) { fprintf(stderr, "failed to create vulkan render finished semaphores\n"); return 0; } else { context->render_finished_semaphores = rf_semaphores; } VkFence* if_fences = create_fences(context->device, VK_FENCE_CREATE_SIGNALED_BIT, max_frames_in_flight); if(if_fences == 0) { fprintf(stderr, "failed to create vulkan in flight fence\n"); return 0; } else { context->in_flight_fences = if_fences; } AllocatedBuffer* uniform_buffers = allocate_buffers(context->physical_device, context->device, sizeof(struct ShaderUBO), VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, max_frames_in_flight); if(uniform_buffers == 0) { fprintf(stderr, "failed to create vulkan uniform buffers\n"); return 0; } else { context->uniform_buffers = uniform_buffers; context->uniform_buffer_ptrs = malloc(sizeof(void*)*max_frames_in_flight); if(context->uniform_buffer_ptrs == 0) { fprintf(stderr, "failed to allocate cpu pointers for uniform buffers\n"); return 0; } for(uint32_t i = 0; i < max_frames_in_flight; i++) { VkResult result = vkMapMemory(context->device, context->uniform_buffers[i].memory, 0, sizeof(struct ShaderUBO), 0, &context->uniform_buffer_ptrs[i]); if(result != VK_SUCCESS) { fprintf(stderr, "failed to map cpu pointer for uniform buffer\n"); return 0; } } } VkDescriptorPool descriptor_pool = create_descriptor_pool(context->device, max_frames_in_flight); if(descriptor_pool == VK_NULL_HANDLE) { fprintf(stderr, "failed to create vulkan descriptor pool\n"); return 0; } else { context->descriptor_pool = descriptor_pool; } VkDescriptorSetLayout triangle_descriptor_set = create_descriptor_set_layout(device); if(triangle_descriptor_set == VK_NULL_HANDLE) { fprintf(stderr, "failed to create vulkan descriptor set layout\n"); return 0; } else { context->triangle_descriptor_set = triangle_descriptor_set; } VkDescriptorSet* descriptor_sets = create_descriptor_sets(context->device, context->triangle_descriptor_set, context->descriptor_pool, context->uniform_buffers, max_frames_in_flight); if(descriptor_sets == 0) { fprintf(stderr, "failed to create vulkan descriptor sets\n"); return 0; } else { context->descriptor_sets = descriptor_sets; } VkPipelineLayout triangle_pipeline_layout = create_pipeline_layout(device, 1, &context->triangle_descriptor_set, 0, 0); if(triangle_pipeline_layout == VK_NULL_HANDLE) { fprintf(stderr, "failed to create vulkan pipeline layout\n"); return 0; } else { context->triangle_pipeline_layout = triangle_pipeline_layout; } VkPipeline triangle_pipeline = create_graphics_pipeline(context->device, context->swapchain_extent, context->triangle_pipeline_layout, context->render_pass); if(triangle_pipeline == VK_NULL_HANDLE) { fprintf(stderr, "failed to create vulkan graphics pipeline\n"); return 0; } else { context->triangle_pipeline = triangle_pipeline; } AllocatedBuffer triangle_vertex_buffer = create_populated_buffer(context->physical_device, context->device, (void*)vertices, sizeof(vertices), context->transfer_command_pool, context->queues.transfer, VK_BUFFER_USAGE_VERTEX_BUFFER_BIT); if(triangle_vertex_buffer.memory == VK_NULL_HANDLE) { fprintf(stderr, "failed to allocate vulkan buffer for triangle buffer\n"); } else { context->triangle_vertex_buffer = triangle_vertex_buffer; } AllocatedBuffer triangle_index_buffer = create_populated_buffer(context->physical_device, context->device, (void*)indices, sizeof(indices), context->transfer_command_pool, context->queues.transfer, VK_BUFFER_USAGE_INDEX_BUFFER_BIT); if(triangle_index_buffer.memory == VK_NULL_HANDLE) { fprintf(stderr, "failed to allocate vulkan buffer for triangle buffer\n"); } else { context->triangle_index_buffer = triangle_index_buffer; } return context; } VkResult update_ubo(void** buffers, uint32_t frame_index) { struct ShaderUBO ubo = {}; glm_mat4_identity(ubo.proj); glm_mat4_identity(ubo.view); glm_mat4_identity(ubo.model); memcpy(buffers[frame_index], (void*)&ubo, sizeof(ubo)); return VK_SUCCESS; } VkResult draw_frame(VulkanContext* context) { update_ubo(context->uniform_buffer_ptrs, context->current_frame); VkResult result; result = vkWaitForFences(context->device, 1, &context->in_flight_fences[context->current_frame], VK_TRUE, UINT64_MAX); if(result != VK_SUCCESS) { return result; } result = vkResetFences(context->device, 1, &context->in_flight_fences[context->current_frame]); if(result != VK_SUCCESS) { return result; } uint32_t image_index; result = vkAcquireNextImageKHR(context->device, context->swapchain, UINT64_MAX, context->image_available_semaphores[context->current_frame], VK_NULL_HANDLE, &image_index); if(result != VK_SUCCESS) { return result; } result = vkResetCommandBuffer(context->swapchain_command_buffers[context->current_frame], 0); if(result != VK_SUCCESS) { return result; } result = record_command_buffer_triangle(context->swapchain_command_buffers[context->current_frame], image_index, context->render_pass, context->swapchain_framebuffers, context->swapchain_extent, context->triangle_pipeline, context->triangle_pipeline_layout, context->descriptor_sets[context->current_frame], context->triangle_vertex_buffer.buffer, context->triangle_index_buffer.buffer, 6); if(result != VK_SUCCESS) { return result; } VkSubmitInfo submit_info = {}; VkPipelineStageFlags wait_stages[] = {VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT}; submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; submit_info.waitSemaphoreCount = 1; submit_info.pWaitSemaphores = &context->image_available_semaphores[context->current_frame]; submit_info.pWaitDstStageMask = wait_stages; submit_info.commandBufferCount = 1; submit_info.pCommandBuffers = &context->swapchain_command_buffers[context->current_frame]; submit_info.signalSemaphoreCount = 1; submit_info.pSignalSemaphores = &context->render_finished_semaphores[context->current_frame]; result = vkQueueSubmit(context->queues.graphics, 1, &submit_info, context->in_flight_fences[context->current_frame]); if(result != VK_SUCCESS) { return result; } VkPresentInfoKHR present_info = {}; present_info.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR; present_info.waitSemaphoreCount = 1; present_info.pWaitSemaphores = &context->render_finished_semaphores[context->current_frame]; present_info.swapchainCount = 1; present_info.pSwapchains = &context->swapchain; present_info.pImageIndices = &image_index; present_info.pResults = 0; return vkQueuePresentKHR(context->queues.present, &present_info); } void main_loop(GLFWwindow* window, VulkanContext* context) { context->current_frame = 0; while(!glfwWindowShouldClose(window)) { glfwPollEvents(); draw_frame(context); context->current_frame += 1; if(context->current_frame >= context->max_frames_in_flight) { context->current_frame = 0; } } vkDeviceWaitIdle(context->device); } void cleanup(GLFWwindow* window, VulkanContext* context) { if(context != 0) { if(context->instance != VK_NULL_HANDLE) { if(context->swapchain != VK_NULL_HANDLE) { vkDestroySwapchainKHR(context->device, context->swapchain, 0); } if(context->surface != VK_NULL_HANDLE) { vkDestroySurfaceKHR(context->instance, context->surface, 0); } if(context->device != VK_NULL_HANDLE) { vkDestroyDevice(context->device, 0); } if(context->debug_messenger != VK_NULL_HANDLE) { PFN_vkDestroyDebugUtilsMessengerEXT destroy_messenger = (PFN_vkDestroyDebugUtilsMessengerEXT)vkGetInstanceProcAddr(context->instance, "vkDestroyDebugUtilsMessengerEXT"); destroy_messenger(context->instance, context->debug_messenger, 0); } vkDestroyInstance(context->instance, 0); } free(context); } if(window != 0) { glfwDestroyWindow(window); glfwTerminate(); } } int main() { GLFWwindow* window = init_window(800, 600); if(window == 0) { fprintf(stderr, "failed to initialize glfw window\n"); return 1; } VulkanContext* context = init_vulkan(window, 2); if (context == 0) { fprintf(stderr, "failed to initialize vulkan context\n"); return 2; } main_loop(window, context); cleanup(window, context); return 0; }