#define VK_USE_PLATFORM_MACOS_MVK #include "vulkan/vulkan_core.h" #include "vulkan/vk_enum_string_helper.h" #define GLFW_INCLUDE_VULKAN #include #define GLFW_EXPOSE_NATIVE_COCOA #include #define GLM_FORCE_RADIANS #define GLM_FORCE_DEPTH_ZERO_TO_ONE #include #include #include #include #include #include #include #include #include #include #include #include typedef struct AllocatedBufferStruct { VkDeviceMemory memory; VkBuffer buffer; } AllocatedBuffer; typedef struct AllocatedImageStruct { VkDeviceMemory memory; VkImage image; } AllocatedImage; typedef struct QueueIndicesStruct { uint32_t graphics_family; uint32_t graphics_index; uint32_t present_family; uint32_t present_index; uint32_t transfer_family; uint32_t transfer_index; } QueueIndices; typedef struct QueuesStruct { VkQueue graphics; VkQueue present; VkQueue transfer; } Queues; typedef struct SwapchainDetailsStruct { VkSurfaceCapabilitiesKHR capabilities; VkSurfaceFormatKHR* formats; uint32_t formats_count; VkPresentModeKHR* present_modes; uint32_t present_modes_count; } SwapchainDetails; typedef struct SwapchainImagesStruct { VkImage* images; uint32_t count; } SwapchainImages; typedef struct TextureStruct { AllocatedImage image; VkImageView view; VkSampler sampler; } Texture; typedef struct PositionStruct { vec3 position; vec3 scale; versor rotation; } Position; typedef void(*MappingFunc)(void*,void*); void attribute_mapping_position_to_matrix(void* dest, void* source) { Position* position = source; glm_translate_make(dest, position->position); glm_quat_rotate(dest, position->rotation, dest); glm_scale(dest, position->scale); } #define MAPPING_POSITION_TO_MATRIX 0 MappingFunc mapping_functions[] = { attribute_mapping_position_to_matrix, }; typedef struct MappingStruct { uint32_t mapping_type; // What function to use to map it uint32_t index; // Which index to use in the ATTRIBUTE_ID_DESCRIPTORS array } Mapping; #define ATTRIBUTE_ID_MESH 0x00000001 // Mesh* #define ATTRIBUTE_ID_MATERIAL 0x00000002 // Material* #define ATTRIBUTE_ID_DESCRIPTORS 0x00000003 // void***(array of array of data pointers) #define ATTRIBUTE_ID_DESCRIPTOR_SETS 0x00000004 // VkDescriptorSet* #define ATTRIBUTE_ID_POSITION 0x00000005 // Position* typedef struct ObjectStruct { Map attributes; } Object; // Defines how a mesh is read from a buffer into a graphics pipeline typedef struct MeshTypeStruct { uint32_t bindings_count; VkVertexInputBindingDescription* bindings; uint32_t attributes_count; VkVertexInputAttributeDescription* attributes; } MeshType; // Defines what descriptors are bound at two different upate rates for the pipeline typedef struct PipelineLayoutStruct { uint32_t object_bindings_count; VkDescriptorSetLayoutBinding* object_bindings; uint32_t material_bindings_count; VkDescriptorSetLayoutBinding* material_bindings; } PipelineLayout; typedef struct MeshStruct { uint32_t vertex_count; VkBuffer vertex_buffer; uint32_t index_count; VkBuffer index_buffer; } Mesh; typedef struct MaterialStruct { VkDescriptorSetLayout material_set_layout; VkDescriptorSetLayout object_set_layout; VkPipelineLayout layout; VkPipeline pipeline; VkDescriptorPool material_descriptor_pool; VkDescriptorSet* material_descriptors; uint32_t material_descriptors_count; Map object_descriptor_mappings; } Material; typedef struct VulkanContextStruct { VkInstance instance; VkDebugUtilsMessengerEXT debug_messenger; VkPhysicalDevice physical_device; QueueIndices queue_indices; VkDevice device; Queues queues; VkSurfaceKHR surface; SwapchainDetails swapchain_details; VkSwapchainKHR swapchain; VkSurfaceFormatKHR swapchain_format; VkPresentModeKHR swapchain_present_mode; VkExtent2D swapchain_extent; uint32_t swapchain_image_count; // Per image objects VkImage* swapchain_images; VkImageView* swapchain_image_views; VkFramebuffer* swapchain_framebuffers; VkDeviceMemory depth_image_memory; VkImage depth_image; VkFormat depth_format; VkImageView depth_image_view; uint32_t max_frames_in_flight; // Per frame objects VkCommandBuffer* swapchain_command_buffers; VkSemaphore* image_available_semaphores; VkSemaphore* render_finished_semaphores; VkFence* in_flight_fences; VkRenderPass render_pass; VkCommandPool graphics_command_pool; VkCommandPool transfer_command_pool; uint32_t current_frame; VkPhysicalDeviceMemoryProperties memories; VkCommandPool extra_graphics_pool; } VulkanContext; typedef struct SceneContextStruct { VkDescriptorPool pool; VkDescriptorSetLayout descriptor_layout; VkDescriptorSet* descriptors; AllocatedBuffer* ubos; void** ubo_ptrs; } SceneContext; struct TextureVertex { vec3 pos; vec3 color; vec2 tex; }; struct Vertex { vec3 pos; vec3 color; }; struct ModelUBO { mat4 model; }; struct SceneUBO { mat4 view; mat4 proj; }; const struct Vertex vertices[] = { {.pos = {-1.f, -1.f, 0.f}, .color = {1.0f, 0.0f, 0.0f}}, {.pos = { 1.f, -1.f, 0.f}, .color = {0.0f, 1.0f, 0.0f}}, {.pos = { 1.f, 1.f, 0.f}, .color = {0.0f, 0.0f, 1.0f}}, {.pos = {-1.f, 1.f, 0.f}, .color = {1.0f, 1.0f, 1.0f}}, }; const struct TextureVertex texture_vertices[] = { {.pos = {-1.f, -1.f, 0.f}, .color = {1.0f, 0.0f, 0.0f}, .tex = {1.0f, 1.0f}}, {.pos = { 1.f, -1.f, 0.f}, .color = {0.0f, 1.0f, 0.0f}, .tex = {0.0f, 1.0f}}, {.pos = { 1.f, 1.f, 0.f}, .color = {0.0f, 0.0f, 1.0f}, .tex = {0.0f, 0.0f}}, {.pos = {-1.f, 1.f, 0.f}, .color = {1.0f, 1.0f, 1.0f}, .tex = {1.0f, 0.0f}}, }; const uint16_t indices[] = { 2, 1, 0, 0, 3, 2, }; const char * validation_layers[] = { "VK_LAYER_KHRONOS_validation", //"VK_LAYER_LUNARG_api_dump", "VK_LAYER_KHRONOS_synchronization2", "VK_LAYER_KHRONOS_shader_object", }; uint32_t validation_layer_count = sizeof(validation_layers) / sizeof(const char *); const char * instance_extensions[] = { VK_KHR_PORTABILITY_ENUMERATION_EXTENSION_NAME, VK_EXT_DEBUG_UTILS_EXTENSION_NAME, "VK_EXT_metal_surface", VK_KHR_SURFACE_EXTENSION_NAME, }; uint32_t instance_extension_count = sizeof(instance_extensions) / sizeof(const char *); const char * device_extensions[] = { VK_KHR_SWAPCHAIN_EXTENSION_NAME, "VK_KHR_portability_subset", }; uint32_t device_extension_count = sizeof(device_extensions) / sizeof(const char *); void glfw_error(int error, const char* description) { fprintf(stderr, "GLFW_ERR: 0x%02x - %s\n", error, description); } GLFWwindow* init_window(int width, int height) { glfwInit(); glfwSetErrorCallback(glfw_error); glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API); glfwWindowHint(GLFW_RESIZABLE, GLFW_TRUE); GLFWwindow* window = glfwCreateWindow(width, height, "Vulkan window", 0, 0); return window; } void object_update_mappings(Material material, Object object, uint32_t frame_num) { if(material.object_descriptor_mappings.buckets == 0) { return; } MaybeValue maybe_descriptors = map_lookup(object.attributes, ATTRIBUTE_ID_DESCRIPTORS); if(maybe_descriptors.has_value == false) { return; } void** descriptors = ((void***)(maybe_descriptors.value))[frame_num]; MapIterator mapping_iterator = map_iterator_create(material.object_descriptor_mappings); for(uint32_t i = 0; i < mapping_iterator.count; i++) { MaybeValue maybe_attribute = map_lookup(object.attributes, mapping_iterator.keys[i]); if(maybe_attribute.has_value == true) { Mapping* mapping = mapping_iterator.vals[i]; if(mapping->mapping_type > sizeof(mapping_functions)/sizeof(MappingFunc)) { fprintf(stderr, "material requested mapping_function 0x%02x which does not exist\n", mapping->mapping_type); continue; } mapping_functions[mapping->mapping_type](descriptors[mapping->index], maybe_attribute.value); } else { fprintf(stderr, "material requested attribute 0x%02x from object, but it does not have it\n", mapping_iterator.keys[i]); } } map_iterator_free(mapping_iterator); } VkSemaphore* create_semaphores(VkDevice device, VkSemaphoreCreateFlags flags, uint32_t count) { VkSemaphore* semaphores = malloc(sizeof(VkSemaphore)*count); if(semaphores == 0) { return 0; } VkSemaphoreCreateInfo semaphore_info = { .sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO, .flags = flags, }; for(uint32_t i = 0; i < count; i++) { VkResult result = vkCreateSemaphore(device, &semaphore_info, 0, &semaphores[i]); if(result != VK_SUCCESS) { free(semaphores); return 0; } } return semaphores; } VkFormat find_depth_format(VkPhysicalDevice physical_device, uint32_t num_requested, VkFormat* requested, VkImageTiling tiling, VkFormatFeatureFlags features) { for(uint32_t i = 0; i < num_requested; i++) { VkFormatProperties properties; vkGetPhysicalDeviceFormatProperties(physical_device, requested[i], &properties); if(tiling == VK_IMAGE_TILING_LINEAR && (properties.linearTilingFeatures & features) == features) { return requested[i]; } else if (tiling == VK_IMAGE_TILING_OPTIMAL && (properties.optimalTilingFeatures & features) == features) { return requested[i]; } } return VK_FORMAT_MAX_ENUM; } bool check_validation_layers(const char ** layers, uint32_t num_layers) { uint32_t layer_count; VkResult result; result = vkEnumerateInstanceLayerProperties(&layer_count, 0); if(result != VK_SUCCESS) { return false; } VkLayerProperties* available_layers = malloc(sizeof(VkLayerProperties)*layer_count); result = vkEnumerateInstanceLayerProperties(&layer_count, available_layers); for(uint32_t i = 0; i < num_layers; i++) { bool found = false; for(uint32_t j = 0; j < layer_count; j++) { if(strcmp(layers[i], available_layers[j].layerName) == 0) { found = true; } } if(found == false) { free(available_layers); return false; } } free(available_layers); return true; } static VKAPI_ATTR VkBool32 VKAPI_CALL debug_callback( VkDebugUtilsMessageSeverityFlagBitsEXT severity, VkDebugUtilsMessageTypeFlagsEXT type, const VkDebugUtilsMessengerCallbackDataEXT* callback_data, void* user_data) { (void)severity; (void)type; (void)user_data; fprintf(stderr, "Validation layer: %s\n", callback_data->pMessage); return VK_FALSE; } VkDescriptorSet* create_descriptor_sets(VkDevice device, VkDescriptorSetLayout layout, VkDescriptorPool pool, uint32_t count) { VkDescriptorSetLayout* layouts = malloc(sizeof(VkDescriptorSetLayout)*count); if(layouts == 0) { return 0; } VkDescriptorSet* sets = malloc(sizeof(VkDescriptorSet)*count); if(sets == 0) { free(layouts); return 0; } for(uint32_t i = 0; i < count; i++) { layouts[i] = layout; } VkDescriptorSetAllocateInfo alloc_info = { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO, .descriptorPool = pool, .descriptorSetCount = count, .pSetLayouts = layouts, }; VkResult result = vkAllocateDescriptorSets(device, &alloc_info, sets); free(layouts); if(result != VK_SUCCESS) { free(sets); return 0; } return sets; } VkPhysicalDevice get_best_physical_device(VkInstance instance) { VkPhysicalDevice device = VK_NULL_HANDLE; uint32_t device_count = 0; VkResult result; result = vkEnumeratePhysicalDevices(instance, &device_count, 0); if(result != VK_SUCCESS) { return VK_NULL_HANDLE; } VkPhysicalDevice* devices = malloc(sizeof(VkPhysicalDevice)*device_count); result = vkEnumeratePhysicalDevices(instance, &device_count, devices); if(result != VK_SUCCESS) { free(devices); return VK_NULL_HANDLE; } int top_score = -1; for(uint32_t i = 0; i < device_count; i++) { int score = 0; VkPhysicalDeviceProperties properties; vkGetPhysicalDeviceProperties(devices[i], &properties); VkPhysicalDeviceFeatures features; vkGetPhysicalDeviceFeatures(devices[i], &features); switch(properties.deviceType) { case VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU: score += 100; break; case VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU: score += 50; break; case VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU: score += 25; break; case VK_PHYSICAL_DEVICE_TYPE_CPU: score += 0; break; default: continue; } if(score > top_score) { top_score = score; device = devices[i]; } } free(devices); return device; } bool check_queue_indices(QueueIndices indices) { return ((indices.graphics_family != 0xFFFFFFFF) && (indices.present_family != 0xFFFFFFFF) && (indices.transfer_family != 0xFFFFFFFF)); } QueueIndices get_queue_indices(VkPhysicalDevice physical_device, VkSurfaceKHR surface) { QueueIndices indices = { .graphics_family = 0xFFFFFFFF, .graphics_index = 0xFFFFFFFF, .present_family = 0xFFFFFFFF, .present_index = 0xFFFFFFFF, .transfer_family = 0xFFFFFFFF, .transfer_index = 0xFFFFFFFF, }; uint32_t queue_family_count; vkGetPhysicalDeviceQueueFamilyProperties(physical_device, &queue_family_count, 0); VkQueueFamilyProperties* queue_families = malloc(sizeof(VkQueueFamilyProperties)*queue_family_count); vkGetPhysicalDeviceQueueFamilyProperties(physical_device, &queue_family_count, queue_families); for(uint32_t family_idx = 0; family_idx < queue_family_count; family_idx++) { VkBool32 present_support; vkGetPhysicalDeviceSurfaceSupportKHR(physical_device, family_idx, surface, &present_support); for(uint32_t queue_idx = 0; queue_idx < queue_families[family_idx].queueCount; queue_idx++) { if(((indices.graphics_family == 0xFFFFFFFF) || (indices.present_family == 0xFFFFFFFF) || (indices.present_family != indices.graphics_family)) && (queue_families[family_idx].queueFlags & VK_QUEUE_GRAPHICS_BIT) && (present_support == VK_TRUE)) { fprintf(stderr, "Selected %d:%d for graphics and present queues\n", family_idx, queue_idx); indices.graphics_family = family_idx; indices.graphics_index = queue_idx; indices.present_family = family_idx; indices.present_index = queue_idx; } else if((indices.graphics_family == 0xFFFFFFFF) && (queue_families[family_idx].queueFlags & VK_QUEUE_GRAPHICS_BIT)) { fprintf(stderr, "Selected %d:%d for graphics queue\n", family_idx, queue_idx); indices.graphics_family = family_idx; indices.graphics_index = queue_idx; } else if((indices.present_family == 0xFFFFFFFF) && (present_support == VK_TRUE)) { fprintf(stderr, "Selected %d:%d for present queue\n", family_idx, queue_idx); indices.present_family = family_idx; indices.present_index = queue_idx; } else if((indices.transfer_family == 0xFFFFFFFF) && (queue_families[family_idx].queueFlags & (VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT))) { fprintf(stderr, "Selected %d:%d for transfer queue\n", family_idx, queue_idx); indices.transfer_family = family_idx; indices.transfer_index = queue_idx; } } } free(queue_families); return indices; } VkDebugUtilsMessengerEXT create_debug_messenger(VkInstance instance) { VkDebugUtilsMessengerEXT debug_messenger; VkDebugUtilsMessengerCreateInfoEXT messenger_info = { .sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT, .messageSeverity = VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT, .messageType = VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_DEVICE_ADDRESS_BINDING_BIT_EXT, .pfnUserCallback = debug_callback, .pUserData = 0, }; PFN_vkCreateDebugUtilsMessengerEXT func = (PFN_vkCreateDebugUtilsMessengerEXT)vkGetInstanceProcAddr(instance, "vkCreateDebugUtilsMessengerEXT"); VkResult result; result = func(instance, &messenger_info, 0, &debug_messenger); if(result != VK_SUCCESS) { fprintf(stderr, "failed to create debug messenger\n"); return VK_NULL_HANDLE; } return debug_messenger; } VkInstance create_instance() { VkInstance instance; if(check_validation_layers(validation_layers, validation_layer_count) == false) { fprintf(stderr, "requested validation layers not supported"); return VK_NULL_HANDLE; } VkApplicationInfo app_info = { .sType = VK_STRUCTURE_TYPE_APPLICATION_INFO, .pApplicationName = "spacegame", .applicationVersion = VK_MAKE_VERSION(0, 0, 1), .pEngineName = "spacegame", .engineVersion = VK_MAKE_VERSION(0, 0, 1), .apiVersion = VK_API_VERSION_1_2, }; uint32_t glfwExtensionCount = 0; const char** glfwExtensions; glfwExtensions = glfwGetRequiredInstanceExtensions(&glfwExtensionCount); const char** requested_extensions = malloc(sizeof(char*)*(glfwExtensionCount + instance_extension_count)); for (uint32_t i = 0; i < glfwExtensionCount; i++) { requested_extensions[i] = glfwExtensions[i]; } for (uint32_t i = 0; i < instance_extension_count; i++) { requested_extensions[glfwExtensionCount + i] = instance_extensions[i]; } VkInstanceCreateInfo instance_info = { .sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO, .pApplicationInfo = &app_info, .enabledLayerCount = validation_layer_count, .ppEnabledLayerNames = validation_layers, .enabledExtensionCount = glfwExtensionCount + instance_extension_count, .ppEnabledExtensionNames = requested_extensions, .flags = VK_INSTANCE_CREATE_ENUMERATE_PORTABILITY_BIT_KHR, }; VkResult result = vkCreateInstance(&instance_info, 0, &instance); if(result != VK_SUCCESS) { fprintf(stderr, "vkCreateInstance: 0x%02x\n", result); return VK_NULL_HANDLE; } free(requested_extensions); return instance; } VkDevice create_logical_device(VkPhysicalDevice physical_device, QueueIndices queue_indices) { VkDevice device; uint32_t unique_families[3] = {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF}; uint32_t unique_family_queues[3] = {0, 0, 0}; uint32_t unique_family_count = 0; uint32_t queue_family[] = {queue_indices.transfer_family, queue_indices.graphics_family, queue_indices.present_family}; uint32_t unique_queue_count = 3; if((queue_indices.graphics_family == queue_indices.present_family) && (queue_indices.graphics_index == queue_indices.present_index)) { unique_queue_count = 2; } for(uint32_t queue_idx = 0; queue_idx < unique_queue_count; queue_idx++) { uint32_t idx = 0xFFFFFFFF; for(uint32_t check_idx = 0; check_idx < unique_family_count; check_idx++) { if(queue_family[queue_idx] == unique_families[check_idx]) { idx = check_idx; break; } } if(idx == 0xFFFFFFFF) { unique_families[unique_family_count] = queue_family[queue_idx]; unique_family_queues[unique_family_count] += 1; unique_family_count += 1; } else { unique_family_queues[idx] += 1; } } VkDeviceQueueCreateInfo queue_create_info[3] = {}; float default_queue_priority = 1.0f; for(uint32_t i = 0; i < unique_family_count; i++) { queue_create_info[i].sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; queue_create_info[i].queueFamilyIndex = unique_families[i]; queue_create_info[i].queueCount = unique_family_queues[i]; queue_create_info[i].pQueuePriorities = &default_queue_priority; } VkPhysicalDeviceFeatures device_features = { .samplerAnisotropy = VK_TRUE, }; VkDeviceCreateInfo device_create_info = { .sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO, .pQueueCreateInfos = queue_create_info, .queueCreateInfoCount = unique_family_count, .pEnabledFeatures = &device_features, .enabledExtensionCount = device_extension_count, .ppEnabledExtensionNames = device_extensions, .enabledLayerCount = validation_layer_count, .ppEnabledLayerNames = validation_layers, }; VkResult result = vkCreateDevice(physical_device, &device_create_info, 0, &device); if(result != VK_SUCCESS) { return VK_NULL_HANDLE; } return device; } SwapchainDetails get_swapchain_details(VkPhysicalDevice physical_device, VkSurfaceKHR surface) { SwapchainDetails details = {}; details.formats = 0; details.present_modes = 0; VkResult result; result = vkGetPhysicalDeviceSurfaceCapabilitiesKHR(physical_device, surface, &details.capabilities); if(result != VK_SUCCESS) { return details; } result = vkGetPhysicalDeviceSurfaceFormatsKHR(physical_device, surface, &details.formats_count, 0); if(result != VK_SUCCESS) { return details; } details.formats = malloc(sizeof(VkSurfaceFormatKHR)*details.formats_count); result = vkGetPhysicalDeviceSurfaceFormatsKHR(physical_device, surface, &details.formats_count, details.formats); if(result != VK_SUCCESS) { free(details.formats); details.formats = 0; return details; } result = vkGetPhysicalDeviceSurfacePresentModesKHR(physical_device, surface, &details.present_modes_count, 0); if(result != VK_SUCCESS) { free(details.formats); details.formats = 0; return details; } details.present_modes = malloc(sizeof(VkPresentModeKHR)*details.present_modes_count); result = vkGetPhysicalDeviceSurfacePresentModesKHR(physical_device, surface, &details.present_modes_count, details.present_modes); if(result != VK_SUCCESS) { free(details.formats); free(details.present_modes); details.formats = 0; details.present_modes = 0; return details; } return details; } VkSurfaceFormatKHR choose_swapchain_format(SwapchainDetails swapchain_details) { for(uint32_t i = 0; i < swapchain_details.formats_count; i++) { VkSurfaceFormatKHR format = swapchain_details.formats[i]; if(format.format == VK_FORMAT_B8G8R8A8_SRGB && format.colorSpace == VK_COLOR_SPACE_SRGB_NONLINEAR_KHR) { return format; } } return swapchain_details.formats[0]; } VkPresentModeKHR choose_present_mode(SwapchainDetails swapchain_details) { for(uint32_t i = 0; i < swapchain_details.present_modes_count; i++) { if(swapchain_details.present_modes[i] == VK_PRESENT_MODE_MAILBOX_KHR) { return VK_PRESENT_MODE_MAILBOX_KHR; } } return VK_PRESENT_MODE_FIFO_KHR; } VkExtent2D choose_swapchain_extent(SwapchainDetails swapchain_details) { return swapchain_details.capabilities.currentExtent; } VkSwapchainKHR create_swapchain(VkDevice device, VkSurfaceFormatKHR format, VkPresentModeKHR present_mode, VkExtent2D extent, VkSurfaceKHR surface, VkSurfaceCapabilitiesKHR capabilities, QueueIndices indices, VkSwapchainKHR old_swapchain) { uint32_t image_count = capabilities.minImageCount + 1; uint32_t max_images = capabilities.maxImageCount; if((max_images > 0) && (image_count > max_images)) { image_count = max_images; } VkSwapchainCreateInfoKHR swapchain_info = { .sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR, .surface = surface, .minImageCount = image_count, .imageFormat = format.format, .imageColorSpace = format.colorSpace, .imageExtent = extent, .imageArrayLayers = 1, .imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, .preTransform = capabilities.currentTransform, .compositeAlpha = VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR, .presentMode = present_mode, .clipped = VK_TRUE, .oldSwapchain = old_swapchain, }; uint32_t queue_families[2] = {indices.graphics_family, indices.present_index}; if(indices.graphics_family != indices.present_family) { swapchain_info.imageSharingMode = VK_SHARING_MODE_CONCURRENT; swapchain_info.queueFamilyIndexCount = 2; swapchain_info.pQueueFamilyIndices = queue_families; } else { swapchain_info.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE; swapchain_info.queueFamilyIndexCount = 0; swapchain_info.pQueueFamilyIndices = 0; } VkSwapchainKHR swapchain; VkResult result; result = vkCreateSwapchainKHR(device, &swapchain_info, 0, &swapchain); if(result != VK_SUCCESS) { return VK_NULL_HANDLE; } return swapchain; } SwapchainImages get_swapchain_images(VkDevice device, VkSwapchainKHR swapchain) { SwapchainImages images = { .images = NULL, .count = 0, }; VkResult result; result = vkGetSwapchainImagesKHR(device, swapchain, &images.count, 0); if(result != VK_SUCCESS) { images.count = 0; return images; } images.images = malloc(sizeof(VkImage)*images.count); if(images.images == 0) { images.count = 0; return images; } result = vkGetSwapchainImagesKHR(device, swapchain, &images.count, images.images); if(result != VK_SUCCESS) { images.count = 0; return images; } return images; } VkImageView* create_image_views(VkDevice device, uint32_t image_count, VkImage* images, VkSurfaceFormatKHR format) { VkImageView* image_views = malloc(sizeof(VkImageView)*image_count); if(image_views == 0) { return 0; } for(uint32_t i = 0; i < image_count; i++) { VkImageViewCreateInfo view_info = { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = images[i], .viewType = VK_IMAGE_VIEW_TYPE_2D, .format = format.format, .components = { .r = VK_COMPONENT_SWIZZLE_IDENTITY, .g = VK_COMPONENT_SWIZZLE_IDENTITY, .b = VK_COMPONENT_SWIZZLE_IDENTITY, .a = VK_COMPONENT_SWIZZLE_IDENTITY, }, .subresourceRange = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = 0, .levelCount = 1, .baseArrayLayer = 0, .layerCount = 1, }, }; VkResult result = vkCreateImageView(device, &view_info, 0, &image_views[i]); if(result != VK_SUCCESS) { free(image_views); return 0; } } return image_views; } VkFramebuffer* create_swapchain_framebuffers(VkDevice device, uint32_t image_count, VkImageView* image_views, VkImageView depth_image_view, VkRenderPass render_pass, VkExtent2D extent) { VkFramebuffer* framebuffers = malloc(sizeof(VkFramebuffer)*image_count); if(framebuffers == 0) { return 0; } for(uint32_t i = 0; i < image_count; i++) { VkImageView attachments[] = { image_views[i], depth_image_view, }; VkFramebufferCreateInfo framebuffer_info = { .sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO, .renderPass = render_pass, .attachmentCount = 2, .pAttachments = attachments, .width = extent.width, .height = extent.height, .layers = 1, }; VkResult result = vkCreateFramebuffer(device, &framebuffer_info, 0, &framebuffers[i]); if(result != VK_SUCCESS) { free(framebuffers); return 0; } } return framebuffers; } VkShaderModule create_shader_module(VkDevice device, const char * code, uint32_t code_size) { VkShaderModuleCreateInfo shader_info = { .sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO, .codeSize = code_size, .pCode = (uint32_t*)code, }; VkShaderModule shader; VkResult result; result = vkCreateShaderModule(device, &shader_info, 0, &shader); if(result != VK_SUCCESS) { return VK_NULL_HANDLE; } return shader; } VkShaderModule load_shader_file(uint32_t buffer_size, const char* path, VkDevice device) { FILE* file; file = fopen(path, "r"); if(file == 0) { return VK_NULL_HANDLE; } char * buffer = malloc(buffer_size); if(buffer == 0) { return VK_NULL_HANDLE; } size_t read = fread(buffer, 1, buffer_size, file); VkShaderModule shader = create_shader_module(device, buffer, read); free(buffer); return shader; } VkRenderPass create_render_pass(VkDevice device, VkSurfaceFormatKHR format, VkFormat depth_format) { VkAttachmentDescription attachments[] = { { .format = format.format, .samples = VK_SAMPLE_COUNT_1_BIT, .loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR, .storeOp = VK_ATTACHMENT_STORE_OP_STORE, .stencilLoadOp = VK_ATTACHMENT_LOAD_OP_CLEAR, .stencilStoreOp = VK_ATTACHMENT_STORE_OP_STORE, .initialLayout = VK_IMAGE_LAYOUT_UNDEFINED, .finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, }, { .format = depth_format, .samples = VK_SAMPLE_COUNT_1_BIT, .loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR, .storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE, .stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE, .stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE, .initialLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, .finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, }, }; VkAttachmentReference color_attachment_refs[] = { { .attachment = 0, .layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, }, }; VkAttachmentReference depth_attachment_ref = { .attachment = 1, .layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, }; VkSubpassDescription subpass = { .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS, .colorAttachmentCount = sizeof(color_attachment_refs)/sizeof(VkAttachmentReference), .pColorAttachments = color_attachment_refs, .pDepthStencilAttachment = &depth_attachment_ref, }; VkSubpassDependency dependency = { .srcSubpass = VK_SUBPASS_EXTERNAL, .dstSubpass = 0, .srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT | VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT, .srcAccessMask = 0, .dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT | VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT, .dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT, }; VkRenderPassCreateInfo render_info = { .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, .attachmentCount = sizeof(attachments)/sizeof(VkAttachmentDescription), .pAttachments = attachments, .subpassCount = 1, .pSubpasses = &subpass, .dependencyCount = 1, .pDependencies = &dependency, }; VkRenderPass render_pass; VkResult result = vkCreateRenderPass(device, &render_info, 0, &render_pass); if(result != VK_SUCCESS) { return VK_NULL_HANDLE; } return render_pass; } AllocatedImage allocate_image(VkPhysicalDeviceMemoryProperties memories, VkDevice device, VkImageType type, VkFormat format, VkExtent3D size, VkImageUsageFlags usage, VkMemoryPropertyFlags include, VkMemoryPropertyFlags exclude) { VkImageCreateInfo image_info = { .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, .imageType = type, .extent = size, .mipLevels = 1, .arrayLayers = 1, .format = format, .tiling = VK_IMAGE_TILING_OPTIMAL, .initialLayout = VK_IMAGE_LAYOUT_UNDEFINED, .usage = usage, .sharingMode = VK_SHARING_MODE_EXCLUSIVE, .samples = VK_SAMPLE_COUNT_1_BIT, .flags = 0, }; AllocatedImage allocated = { .memory = VK_NULL_HANDLE, .image = VK_NULL_HANDLE, }; VkResult result = vkCreateImage(device, &image_info, 0, &allocated.image); if(result != VK_SUCCESS) { return allocated; } VkMemoryRequirements memory_requirements; vkGetImageMemoryRequirements(device, allocated.image, &memory_requirements); VkMemoryAllocateInfo memory_info = { .sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, .allocationSize = memory_requirements.size, .memoryTypeIndex = pick_memory(memories, memory_requirements.memoryTypeBits, include, exclude).index, }; result = vkAllocateMemory(device, &memory_info, 0, &allocated.memory); if(result != VK_SUCCESS) { vkDestroyImage(device, allocated.image, 0); allocated.image = VK_NULL_HANDLE; return allocated; } result = vkBindImageMemory(device, allocated.image, allocated.memory, 0); if(result != VK_SUCCESS) { vkFreeMemory(device, allocated.memory, 0); vkDestroyImage(device, allocated.image, 0); allocated.memory = VK_NULL_HANDLE; allocated.image = VK_NULL_HANDLE; return allocated; } return allocated; } AllocatedBuffer allocate_buffer(VkPhysicalDeviceMemoryProperties memories, VkDevice device, VkDeviceSize size, VkBufferUsageFlags usage, VkMemoryPropertyFlags include, VkMemoryPropertyFlags exclude) { AllocatedBuffer ret = { .memory = VK_NULL_HANDLE, .buffer = VK_NULL_HANDLE, }; VkBufferCreateInfo buffer_info = { .sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO, .size = size, .usage = usage, .sharingMode = VK_SHARING_MODE_EXCLUSIVE, }; VkResult result = vkCreateBuffer(device, &buffer_info, 0, &ret.buffer); if(result != VK_SUCCESS) { ret.buffer = VK_NULL_HANDLE; ret.memory = VK_NULL_HANDLE; return ret; } VkMemoryRequirements memory_requirements; vkGetBufferMemoryRequirements(device, ret.buffer, &memory_requirements); VkMemoryAllocateInfo alloc_info = { .sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, .allocationSize = memory_requirements.size, .memoryTypeIndex = pick_memory(memories, memory_requirements.memoryTypeBits, include, exclude).index, }; result = vkAllocateMemory(device, &alloc_info, 0, &ret.memory); if(result != VK_SUCCESS) { vkDestroyBuffer(device, ret.buffer, 0); ret.buffer = VK_NULL_HANDLE; ret.memory = VK_NULL_HANDLE; return ret; } result = vkBindBufferMemory(device, ret.buffer, ret.memory, 0); if(result != VK_SUCCESS) { vkDestroyBuffer(device, ret.buffer, 0); ret.buffer = VK_NULL_HANDLE; ret.memory = VK_NULL_HANDLE; return ret; } return ret; } void deallocate_buffer(VkDevice device, AllocatedBuffer buffer) { vkDestroyBuffer(device, buffer.buffer, 0); vkFreeMemory(device, buffer.memory, 0); }; void deallocate_image(VkDevice device, AllocatedImage image) { vkDestroyImage(device, image.image, 0); vkFreeMemory(device, image.memory, 0); }; AllocatedBuffer* allocate_buffers(VkPhysicalDeviceMemoryProperties memories, VkDevice device, VkDeviceSize size, VkBufferUsageFlags usage, uint32_t count, VkMemoryPropertyFlags include, VkMemoryPropertyFlags exclude) { AllocatedBuffer* buffers = malloc(sizeof(AllocatedBuffer)*count); if(buffers == 0) { return 0; } for(uint32_t i = 0; i < count; i++) { buffers[i] = allocate_buffer(memories, device, size, usage, include, exclude); if(buffers[i].memory == VK_NULL_HANDLE) { for(uint32_t j = 0; j < i; j++) { deallocate_buffer(device, buffers[i]); } free(buffers); return 0; } } return buffers; } VkCommandBuffer command_begin_single(VkDevice device, VkCommandPool transfer_pool) { VkCommandBufferAllocateInfo command_info = { .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO, .level = VK_COMMAND_BUFFER_LEVEL_PRIMARY, .commandPool = transfer_pool, .commandBufferCount = 1, }; VkCommandBuffer command_buffer; VkResult result = vkAllocateCommandBuffers(device, &command_info, &command_buffer); if(result != VK_SUCCESS) { return VK_NULL_HANDLE; } VkCommandBufferBeginInfo begin_info = { .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, .flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT, }; result = vkBeginCommandBuffer(command_buffer, &begin_info); if(result != VK_SUCCESS) { vkFreeCommandBuffers(device, transfer_pool, 1, &command_buffer); return VK_NULL_HANDLE; } return command_buffer; } VkResult command_end_single(VkDevice device, VkCommandBuffer command_buffer, VkCommandPool transfer_pool, VkQueue transfer_queue) { VkResult result = vkEndCommandBuffer(command_buffer); if(result != VK_SUCCESS) { vkFreeCommandBuffers(device, transfer_pool, 1, &command_buffer); return result; } VkSubmitInfo submit_info = { .sType = VK_STRUCTURE_TYPE_SUBMIT_INFO, .commandBufferCount = 1, .pCommandBuffers = &command_buffer, }; result = vkQueueSubmit(transfer_queue, 1, &submit_info, 0); if(result != VK_SUCCESS) { vkFreeCommandBuffers(device, transfer_pool, 1, &command_buffer); return result; } result = vkQueueWaitIdle(transfer_queue); vkFreeCommandBuffers(device, transfer_pool, 1, &command_buffer); return result; } VkResult command_copy_buffers(VkDevice device, VkCommandPool transfer_pool, VkQueue transfer_queue, VkBuffer source, VkBuffer dest, VkDeviceSize size) { VkCommandBuffer command_buffer = command_begin_single(device, transfer_pool); VkBufferCopy copy_region = { .srcOffset = 0, .dstOffset = 0, .size = size, }; vkCmdCopyBuffer(command_buffer, source, dest, 1, ©_region); return command_end_single(device, command_buffer, transfer_pool, transfer_queue); } VkResult command_transition_image_layout(VkDevice device, VkCommandPool transfer_pool, VkQueue transfer_queue, VkImageLayout old_layout, VkImageLayout new_layout, VkImage image, VkAccessFlags src_mask, VkAccessFlags dst_mask, VkPipelineStageFlags source, VkPipelineStageFlags dest, uint32_t source_family, uint32_t dest_family, VkImageAspectFlags aspect_flags) { VkCommandBuffer command_buffer = command_begin_single(device, transfer_pool); VkImageMemoryBarrier barrier = { .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, .oldLayout = old_layout, .newLayout = new_layout, .srcQueueFamilyIndex = source_family, .dstQueueFamilyIndex = dest_family, .image = image, .subresourceRange = { .aspectMask = aspect_flags, .levelCount = 1, .layerCount = 1, .baseMipLevel = 0, .baseArrayLayer = 0, }, .srcAccessMask = src_mask, .dstAccessMask = dst_mask, }; vkCmdPipelineBarrier(command_buffer, source, dest, 0, 0, 0, 0, 0, 1, &barrier); return command_end_single(device, command_buffer, transfer_pool, transfer_queue); } VkResult command_copy_buffer_to_image(VkDevice device, VkCommandPool transfer_pool, VkQueue transfer_queue, VkExtent3D image_size, VkBuffer source, VkImage dest) { VkCommandBuffer command_buffer = command_begin_single(device, transfer_pool); VkBufferImageCopy region = { .bufferOffset = 0, .bufferRowLength = 0, .bufferImageHeight = 0, .imageSubresource = { .baseArrayLayer = 0, .layerCount = 1, .mipLevel = 0, .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, }, .imageOffset = { .x = 0, .y = 0, .z = 0, }, .imageExtent = image_size, }; vkCmdCopyBufferToImage(command_buffer, source, dest, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ®ion); return command_end_single(device, command_buffer, transfer_pool, transfer_queue); } AllocatedBuffer create_populated_buffer(VkPhysicalDeviceMemoryProperties memories, VkDevice device, void* data, VkDeviceSize size, VkCommandPool transfer_pool, VkQueue transfer_queue, VkBufferUsageFlags usage) { AllocatedBuffer staging_buffer = {}; AllocatedBuffer vertex_buffer = {}; staging_buffer = allocate_buffer(memories, device, size, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, VK_MEMORY_PROPERTY_HOST_COHERENT_BIT); if(staging_buffer.memory == VK_NULL_HANDLE) { return vertex_buffer; } void* buffer_data; VkResult result = vkMapMemory(device, staging_buffer.memory, 0, size, 0, &buffer_data); if(result != VK_SUCCESS) { deallocate_buffer(device, staging_buffer); return vertex_buffer; } memcpy(buffer_data, data, size); vkUnmapMemory(device, staging_buffer.memory); vertex_buffer = allocate_buffer(memories, device, size, VK_BUFFER_USAGE_TRANSFER_DST_BIT | usage, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT); if(vertex_buffer.memory == VK_NULL_HANDLE) { deallocate_buffer(device, staging_buffer); return vertex_buffer; } result = command_copy_buffers(device, transfer_pool, transfer_queue, staging_buffer.buffer, vertex_buffer.buffer, size); if(result != VK_SUCCESS) { deallocate_buffer(device, staging_buffer); deallocate_buffer(device, vertex_buffer); vertex_buffer.buffer = VK_NULL_HANDLE; vertex_buffer.memory = VK_NULL_HANDLE; return vertex_buffer; } return vertex_buffer; } Texture load_texture(VkPhysicalDeviceMemoryProperties memories, VkDevice device, VkCommandPool transfer_pool, VkQueue transfer_queue, VkCommandPool graphics_pool, VkQueue graphics_queue, VkExtent2D size, uint32_t stride, VkFormat format, void* image_data, uint32_t transfer_family, uint32_t graphics_family){ Texture ret = { .image.image = VK_NULL_HANDLE, .image.memory = VK_NULL_HANDLE, .view = VK_NULL_HANDLE, }; uint32_t image_size = size.width * size.height * stride; AllocatedBuffer staging = allocate_buffer(memories, device, image_size, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, VK_MEMORY_PROPERTY_HOST_COHERENT_BIT); if(staging.memory == VK_NULL_HANDLE) { return ret; } void* staging_ptr; VkResult result = vkMapMemory(device, staging.memory, 0, image_size, 0, &staging_ptr); if(result != VK_SUCCESS) { deallocate_buffer(device, staging); return ret; } memcpy(staging_ptr, image_data, image_size); vkUnmapMemory(device, staging.memory); VkExtent3D full_extent = { .width = size.width, .height = size.height, .depth = 1, }; AllocatedImage image = allocate_image(memories, device, VK_IMAGE_TYPE_2D, format, full_extent, VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, 0); if(image.memory == VK_NULL_HANDLE) { deallocate_buffer(device, staging); deallocate_image(device, image); return ret; } result = command_transition_image_layout(device, transfer_pool, transfer_queue, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, image.image, 0, VK_ACCESS_TRANSFER_WRITE_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, transfer_family, transfer_family, VK_IMAGE_ASPECT_COLOR_BIT); if(result != VK_SUCCESS) { deallocate_buffer(device, staging); deallocate_image(device, image); return ret; } result = command_copy_buffer_to_image(device, transfer_pool, transfer_queue, full_extent, staging.buffer, image.image); if(result != VK_SUCCESS) { deallocate_buffer(device, staging); deallocate_image(device, image); return ret; } result = command_transition_image_layout(device, transfer_pool, transfer_queue, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, image.image, VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_SHADER_READ_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, transfer_family, graphics_family, VK_IMAGE_ASPECT_COLOR_BIT); if(result != VK_SUCCESS) { deallocate_buffer(device, staging); deallocate_image(device, image); return ret; } result = command_transition_image_layout(device, graphics_pool, graphics_queue, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, image.image, VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_SHADER_READ_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, transfer_family, graphics_family, VK_IMAGE_ASPECT_COLOR_BIT); if(result != VK_SUCCESS) { deallocate_buffer(device, staging); deallocate_image(device, image); return ret; } VkImageView view; VkImageViewCreateInfo view_info = { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = image.image, .viewType = VK_IMAGE_VIEW_TYPE_2D, .components = { .a = VK_COMPONENT_SWIZZLE_IDENTITY, .b = VK_COMPONENT_SWIZZLE_IDENTITY, .g = VK_COMPONENT_SWIZZLE_IDENTITY, .r = VK_COMPONENT_SWIZZLE_IDENTITY, }, .format = format, .subresourceRange = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .layerCount = 1, .levelCount = 1, .baseArrayLayer = 0, .baseMipLevel = 0, }, }; result = vkCreateImageView(device, &view_info, 0, &view); if(result != VK_SUCCESS) { deallocate_buffer(device, staging); deallocate_image(device, image); return ret; } VkSampler sampler; VkSamplerCreateInfo sampler_info = { .sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO, .magFilter = VK_FILTER_NEAREST, .minFilter = VK_FILTER_NEAREST, .addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT, .addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT, .addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT, .anisotropyEnable = VK_FALSE, .maxAnisotropy = 2.0f, .borderColor = VK_BORDER_COLOR_INT_OPAQUE_BLACK, .unnormalizedCoordinates = VK_FALSE, .compareEnable = VK_FALSE, .compareOp = VK_COMPARE_OP_ALWAYS, .mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR, .mipLodBias = 0.0f, .minLod = 0.0f, .maxLod = 0.0f, }; result = vkCreateSampler(device, &sampler_info, 0, &sampler); deallocate_buffer(device, staging); if(result != VK_SUCCESS) { deallocate_image(device, image); return ret; } ret.image = image; ret.view = view; ret.sampler = sampler; return ret; } VkPipeline create_graphics_pipeline( VkDevice device, VkExtent2D extent, VkPipelineLayout layout, VkRenderPass render_pass, uint32_t shader_stage_count, VkPipelineShaderStageCreateInfo* shader_stages, MeshType mesh_type ) { VkDynamicState dynamic_states[] = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR, }; uint32_t dynamic_state_count = sizeof(dynamic_states)/sizeof(VkDynamicState); VkPipelineDynamicStateCreateInfo dynamic_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO, .dynamicStateCount = dynamic_state_count, .pDynamicStates = dynamic_states, }; VkPipelineVertexInputStateCreateInfo vertex_input_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO, .vertexBindingDescriptionCount = mesh_type.bindings_count, .pVertexBindingDescriptions = mesh_type.bindings, .vertexAttributeDescriptionCount = mesh_type.attributes_count, .pVertexAttributeDescriptions = mesh_type.attributes, }; VkPipelineInputAssemblyStateCreateInfo input_assembly_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO, .topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, .primitiveRestartEnable = VK_FALSE, }; VkViewport viewport = { .x = 0.0f, .y = 0.0f, .width = (float)(extent.width), .height = (float)(extent.height), .minDepth = 0.0f, .maxDepth = 1.0f, }; VkRect2D scissor = { .offset = { .x = 0, .y = 0, }, .extent = extent, }; VkPipelineViewportStateCreateInfo viewport_state = { .sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO, .viewportCount = 1, .pViewports = &viewport, .scissorCount = 1, .pScissors = &scissor, }; VkPipelineRasterizationStateCreateInfo raster_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO, .depthClampEnable = VK_FALSE, .rasterizerDiscardEnable = VK_FALSE, .polygonMode = VK_POLYGON_MODE_FILL, .lineWidth = 1.0f, .cullMode = VK_CULL_MODE_NONE, .frontFace = VK_FRONT_FACE_CLOCKWISE, .depthBiasEnable = VK_FALSE, .depthBiasConstantFactor = 0.0f, .depthBiasClamp = 0.0f, .depthBiasSlopeFactor = 0.0f, }; VkPipelineMultisampleStateCreateInfo multisample_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO, .sampleShadingEnable = VK_FALSE, .rasterizationSamples = VK_SAMPLE_COUNT_1_BIT, .minSampleShading = 1.0f, .pSampleMask = 0, .alphaToCoverageEnable = VK_FALSE, .alphaToOneEnable = VK_FALSE, }; VkPipelineDepthStencilStateCreateInfo depth_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO, .depthTestEnable = VK_TRUE, .depthWriteEnable = VK_TRUE, .depthCompareOp = VK_COMPARE_OP_LESS, .depthBoundsTestEnable = VK_FALSE, .maxDepthBounds = 1.0f, .minDepthBounds = 0.0f, .stencilTestEnable = VK_FALSE, .front = {}, .back = {}, }; VkPipelineColorBlendAttachmentState color_blend_attachment = { .colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT, .blendEnable = VK_TRUE, .srcColorBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA, .dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA, .colorBlendOp = VK_BLEND_OP_ADD, .srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE, .dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO, .alphaBlendOp = VK_BLEND_OP_ADD, }; VkPipelineColorBlendStateCreateInfo color_blend_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO, .logicOpEnable = VK_FALSE, .logicOp = VK_LOGIC_OP_COPY, .attachmentCount = 1, .pAttachments = &color_blend_attachment, .blendConstants[0] = 0.0f, .blendConstants[1] = 0.0f, .blendConstants[2] = 0.0f, .blendConstants[3] = 0.0f, }; VkGraphicsPipelineCreateInfo pipeline_info = { .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO, .stageCount = shader_stage_count, .pStages = shader_stages, .pVertexInputState = &vertex_input_info, .pInputAssemblyState = &input_assembly_info, .pViewportState = &viewport_state, .pRasterizationState = &raster_info, .pColorBlendState = &color_blend_info, .pDynamicState = &dynamic_info, .pDepthStencilState = &depth_info, .pMultisampleState = &multisample_info, .layout = layout, .renderPass = render_pass, .subpass = 0, .basePipelineHandle = VK_NULL_HANDLE, .basePipelineIndex = -1, }; VkPipeline pipeline; VkResult result = vkCreateGraphicsPipelines(device, VK_NULL_HANDLE, 1, &pipeline_info, 0, &pipeline); if(result != VK_SUCCESS) { return VK_NULL_HANDLE; } return pipeline; } int create_depth_image(VulkanContext* context) { VkExtent3D depth_extent = { .width = context->swapchain_extent.width, .height = context->swapchain_extent.height, .depth = 1, }; VkImageCreateInfo depth_image_info = { .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, .imageType = VK_IMAGE_TYPE_2D, .extent = depth_extent, .mipLevels = 1, .arrayLayers = 1, .format = context->depth_format, .tiling = VK_IMAGE_TILING_OPTIMAL, .initialLayout = VK_IMAGE_LAYOUT_UNDEFINED, .usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT, .sharingMode = VK_SHARING_MODE_EXCLUSIVE, .samples = VK_SAMPLE_COUNT_1_BIT, .flags = 0, }; VkImage depth_image; VkResult result = vkCreateImage(context->device, &depth_image_info, 0, &depth_image); if(result != VK_SUCCESS) { fprintf(stderr, "failed to create depth image\n"); return 1; } else { context->depth_image = depth_image; } VkMemoryRequirements depth_image_requirements; vkGetImageMemoryRequirements(context->device, context->depth_image, &depth_image_requirements); VkMemoryAllocateInfo depth_memory_info = { .sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, .allocationSize = depth_image_requirements.size, .memoryTypeIndex = pick_memory(context->memories, depth_image_requirements.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT, 0).index, }; VkDeviceMemory depth_image_memory; result = vkAllocateMemory(context->device, &depth_memory_info, 0, &depth_image_memory); if(result != VK_SUCCESS) { fprintf(stderr, "failed to allocate memory for depth image\n"); return 2; } else { context->depth_image_memory = depth_image_memory; } result = vkBindImageMemory(context->device, context->depth_image, context->depth_image_memory, 0); if(result != VK_SUCCESS) { fprintf(stderr, "failed to bind memory for depth image\n"); return 3; } VkImageViewCreateInfo depth_view_info = { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = context->depth_image, .viewType = VK_IMAGE_VIEW_TYPE_2D, .format = context->depth_format, .components = { .r = VK_COMPONENT_SWIZZLE_IDENTITY, .g = VK_COMPONENT_SWIZZLE_IDENTITY, .b = VK_COMPONENT_SWIZZLE_IDENTITY, .a = VK_COMPONENT_SWIZZLE_IDENTITY, }, .subresourceRange = { .aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT, .baseMipLevel = 0, .levelCount = 1, .baseArrayLayer = 0, .layerCount = 1, }, }; VkImageView depth_image_view; result = vkCreateImageView(context->device, &depth_view_info, 0, &depth_image_view); if(result != VK_SUCCESS) { fprintf(stderr, "failed to create vulkan depth image view\n"); return 4; } else { context->depth_image_view = depth_image_view; } result = command_transition_image_layout(context->device, context->extra_graphics_pool, context->queues.graphics, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL, context->depth_image, 0, VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT, VK_QUEUE_FAMILY_IGNORED, VK_QUEUE_FAMILY_IGNORED, VK_IMAGE_ASPECT_DEPTH_BIT); if(result != VK_SUCCESS) { fprintf(stderr, "failed to transition depth image\n"); return 5; } return 0; } VkResult recreate_swapchain(VulkanContext* context) { for(uint32_t i = 0; i < context->swapchain_image_count; i++) { vkDestroyFramebuffer(context->device, context->swapchain_framebuffers[i], 0); vkDestroyImageView(context->device, context->swapchain_image_views[i], 0); } for(uint32_t i = 0; i < context->max_frames_in_flight; i++) { vkDestroySemaphore(context->device, context->image_available_semaphores[i], 0); } free(context->swapchain_image_views); free(context->swapchain_framebuffers); free(context->swapchain_details.formats); free(context->swapchain_details.present_modes); vkDestroyImageView(context->device, context->depth_image_view, 0); vkDestroyImage(context->device, context->depth_image, 0); vkFreeMemory(context->device, context->depth_image_memory, 0); SwapchainDetails swapchain_details = get_swapchain_details(context->physical_device, context->surface); if(swapchain_details.formats == 0) { return VK_ERROR_INITIALIZATION_FAILED; } else { context->swapchain_details = swapchain_details; } context->swapchain_format = choose_swapchain_format(context->swapchain_details); context->swapchain_present_mode = choose_present_mode(context->swapchain_details); context->swapchain_extent = choose_swapchain_extent(context->swapchain_details); create_depth_image(context); VkSwapchainKHR swapchain = create_swapchain(context->device, context->swapchain_format, context->swapchain_present_mode, context->swapchain_extent, context->surface, context->swapchain_details.capabilities, context->queue_indices, context->swapchain); if(swapchain == VK_NULL_HANDLE) { context->swapchain = VK_NULL_HANDLE; return VK_ERROR_INITIALIZATION_FAILED; } else { context->swapchain = swapchain; } SwapchainImages swapchain_images = get_swapchain_images(context->device, context->swapchain); if(swapchain_images.count == 0) { return VK_ERROR_INITIALIZATION_FAILED; } else { context->swapchain_images = swapchain_images.images; context->swapchain_image_count = swapchain_images.count; } VkImageView* image_views = create_image_views(context->device, context->swapchain_image_count, context->swapchain_images, context->swapchain_format); if(image_views == 0) { return VK_ERROR_INITIALIZATION_FAILED; } else { context->swapchain_image_views = image_views; } VkFramebuffer* framebuffers = create_swapchain_framebuffers(context->device, context->swapchain_image_count, context->swapchain_image_views, context->depth_image_view, context->render_pass, context->swapchain_extent); if(framebuffers == 0) { return VK_ERROR_INITIALIZATION_FAILED; } else { context->swapchain_framebuffers = framebuffers; } VkSemaphore* ia_semaphores = create_semaphores(context->device, 0, context->max_frames_in_flight); if(ia_semaphores == 0) { fprintf(stderr, "failed to create vulkan image available semaphores\n"); return 0; } else { context->image_available_semaphores = ia_semaphores; } return VK_SUCCESS; } void command_draw_object(Material material, Object object, uint32_t frame_num, VkCommandBuffer command_buffer) { MaybeValue maybe_mesh = map_lookup(object.attributes, ATTRIBUTE_ID_MESH); if(maybe_mesh.has_value == false) { return; } object_update_mappings(material, object, frame_num); Mesh* mesh = maybe_mesh.value; VkBuffer vertex_buffers[] = {mesh->vertex_buffer}; VkDeviceSize offsets[] = {0}; vkCmdBindVertexBuffers(command_buffer, 0, 1, vertex_buffers, offsets); vkCmdBindIndexBuffer(command_buffer, mesh->index_buffer, 0, VK_INDEX_TYPE_UINT16); if(material.object_set_layout != VK_NULL_HANDLE) { MaybeValue maybe_descriptors = map_lookup(object.attributes, ATTRIBUTE_ID_DESCRIPTOR_SETS); if(maybe_descriptors.has_value == false) { return; } VkDescriptorSet* descriptor_sets = maybe_descriptors.value; vkCmdBindDescriptorSets(command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, material.layout, 2, 1, &descriptor_sets[frame_num], 0, 0); } else { fprintf(stderr, "test\n"); } vkCmdDrawIndexed(command_buffer, mesh->index_count, 1, 0, 0, 0); } void command_draw_material(Material material, uint32_t object_count, Object* objects, uint32_t frame_num, VkDescriptorSet* scene_descriptors, VkCommandBuffer command_buffer) { vkCmdBindPipeline(command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, material.pipeline); vkCmdBindDescriptorSets(command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, material.layout, 0, 1, &scene_descriptors[frame_num], 0, 0); if(material.material_descriptors != 0) { vkCmdBindDescriptorSets(command_buffer, VK_PIPELINE_BIND_POINT_GRAPHICS, material.layout, 1, 1, &material.material_descriptors[frame_num], 0, 0); } for(uint32_t i = 0; i < object_count; i++) { command_draw_object(material, objects[i], frame_num, command_buffer); } } VkResult command_draw_scene(uint32_t materials_count, Material* materials, uint32_t* object_counts, Object** objects, uint32_t frame_num, VkDescriptorSet* scene_descriptors, VkCommandBuffer command_buffer, VkRenderPass render_pass, VkFramebuffer framebuffer, VkExtent2D extent) { VkCommandBufferBeginInfo begin_info = { .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, .flags = 0, .pInheritanceInfo = 0, }; VkResult result = vkBeginCommandBuffer(command_buffer, &begin_info); if(result != VK_SUCCESS) { return result; } VkClearValue clear_colors[] = { { .color = { {0.0f, 0.0f, 0.0f, 1.0f} } }, { .depthStencil = {1.0f, 0.0f}, }, }; VkRenderPassBeginInfo render_pass_info = { .sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO, .renderPass = render_pass, .framebuffer = framebuffer, .renderArea = { .offset = { .x = 0, .y = 0, }, .extent = extent, }, .clearValueCount = sizeof(clear_colors)/sizeof(VkClearValue), .pClearValues = clear_colors, }; vkCmdBeginRenderPass(command_buffer, &render_pass_info, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = { .x = 0.0f, .y = 0.0f, .width = (float)(extent.width), .height = (float)(extent.height), .minDepth = 0.0f, .maxDepth = 1.0f, }; vkCmdSetViewport(command_buffer, 0, 1, &viewport); VkRect2D scissor = { .offset = { .x = 0.0f, .y = 0.0f, }, .extent = extent, }; vkCmdSetScissor(command_buffer, 0, 1, &scissor); for(uint i = 0; i < materials_count; i++) { command_draw_material(materials[i], object_counts[i], objects[i], frame_num, scene_descriptors, command_buffer); } vkCmdEndRenderPass(command_buffer); return vkEndCommandBuffer(command_buffer); } VkCommandBuffer* create_command_buffers(VkDevice device, VkCommandPool command_pool, uint32_t image_count) { VkCommandBufferAllocateInfo alloc_info = { .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO, .commandPool = command_pool, .level = VK_COMMAND_BUFFER_LEVEL_PRIMARY, .commandBufferCount = image_count, }; VkCommandBuffer* command_buffers = malloc(sizeof(VkCommandBuffer)*image_count); if(command_buffers == 0) { return 0; } VkResult result = vkAllocateCommandBuffers(device, &alloc_info, command_buffers); if(result != VK_SUCCESS) { return VK_NULL_HANDLE; } return command_buffers; } VkFence* create_fences(VkDevice device, VkFenceCreateFlags flags, uint32_t count) { VkFence* fences = malloc(sizeof(VkFence)*count); if(fences == 0) { return 0; } VkFenceCreateInfo fence_info = { .sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO, .flags = flags, }; for(uint32_t i = 0; i < count; i++) { VkResult result = vkCreateFence(device, &fence_info, 0, &fences[i]); if(result != VK_SUCCESS) { free(fences); return 0; } } return fences; } Object create_object(uint32_t max_frames_in_flight, uint32_t descriptor_count) { Object ret = { .attributes = { .buckets = 0, }, }; Map attributes = map_create(8, 2); if(attributes.buckets == 0) { return ret; } if(descriptor_count > 0) { void*** descriptor_arrays = malloc(sizeof(void**)*max_frames_in_flight); if(descriptor_arrays == 0) { return ret; } for(uint32_t i = 0; i < max_frames_in_flight; i++) { descriptor_arrays[i] = malloc(sizeof(void*)*descriptor_count); if(descriptor_arrays[i] == 0) { for(uint32_t j = 0; j < i; j++) { free(descriptor_arrays[j]); } free(descriptor_arrays); map_destroy(attributes); } } bool result = map_add(&attributes, ATTRIBUTE_ID_DESCRIPTORS, descriptor_arrays); if(result == false) { for(uint32_t i = 0; i < max_frames_in_flight; i++) { free(descriptor_arrays[i]); } free(descriptor_arrays); map_destroy(attributes); } } ret.attributes = attributes; return ret; } Object create_renderable(Mesh* mesh, Material* material, uint32_t descriptor_sets_count, VkDescriptorSet* descriptor_sets, uint32_t max_frames_in_flight) { Object zero = { .attributes = { .buckets = 0, }, }; Object object = create_object(max_frames_in_flight, descriptor_sets_count); if(object.attributes.buckets == 0) { return zero; } if(mesh == 0 || material == 0) { return zero; } bool result = map_add(&object.attributes, ATTRIBUTE_ID_MESH, mesh); if(result == false) { map_destroy(object.attributes); return zero; } result = map_add(&object.attributes, ATTRIBUTE_ID_MATERIAL, material); if(result == false) { map_destroy(object.attributes); return zero; } result = map_add(&object.attributes, ATTRIBUTE_ID_DESCRIPTOR_SETS, descriptor_sets); if(result == false) { map_destroy(object.attributes); return zero; } return object; } Material create_material( VkDevice device, VkExtent2D extent, VkRenderPass render_pass, uint32_t shader_stage_count, VkPipelineShaderStageCreateInfo* shader_stages, VkDescriptorSetLayout scene_ubo_layout, PipelineLayout pipeline_layout, MeshType mesh_type, uint32_t max_frames_in_flight, Map object_descriptor_mappings ) { Material zero_material = { .pipeline = VK_NULL_HANDLE, }; VkDescriptorSetLayout material_set_layout; VkDescriptorSetLayout object_set_layout; VkDescriptorPool material_descriptor_pool = VK_NULL_HANDLE; VkDescriptorSet* material_descriptors = 0; VkDescriptorSetLayoutCreateInfo material_layout_info = { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, .bindingCount = pipeline_layout.material_bindings_count, .pBindings = pipeline_layout.material_bindings, }; VkResult result = vkCreateDescriptorSetLayout(device, &material_layout_info, 0, &material_set_layout); if(result != VK_SUCCESS) { return zero_material; } if(pipeline_layout.material_bindings_count > 0) { material_descriptors = malloc(sizeof(VkDescriptorSet)*max_frames_in_flight); if(material_descriptors == 0) { return zero_material; } VkDescriptorPoolSize* pool_sizes = malloc(sizeof(VkDescriptorPool)*pipeline_layout.material_bindings_count); if(pool_sizes == 0) { return zero_material; } for(uint32_t i = 0; i < pipeline_layout.material_bindings_count; i++) { VkDescriptorPoolSize pool_size = { .type = pipeline_layout.material_bindings[i].descriptorType, .descriptorCount = pipeline_layout.material_bindings[i].descriptorCount, }; pool_sizes[i] = pool_size; } VkDescriptorPoolCreateInfo pool_info = { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO, .poolSizeCount = pipeline_layout.material_bindings_count, .maxSets = max_frames_in_flight, .pPoolSizes = pool_sizes, }; result = vkCreateDescriptorPool(device, &pool_info, 0, &material_descriptor_pool); free(pool_sizes); if(result != VK_SUCCESS) { return zero_material; } VkDescriptorSetLayout* set_layouts = malloc(sizeof(VkDescriptorSetLayout)*max_frames_in_flight); if(set_layouts == 0) { vkDestroyDescriptorPool(device, material_descriptor_pool, 0); return zero_material; } for(uint32_t i = 0; i < max_frames_in_flight; i++) { set_layouts[i] = material_set_layout; } VkDescriptorSetAllocateInfo alloc_info = { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO, .descriptorSetCount = max_frames_in_flight, .descriptorPool = material_descriptor_pool, .pSetLayouts = set_layouts, }; result = vkAllocateDescriptorSets(device, &alloc_info, material_descriptors); free(set_layouts); if(result != VK_SUCCESS) { vkDestroyDescriptorPool(device, material_descriptor_pool, 0); return zero_material; } } VkDescriptorSetLayoutCreateInfo mesh_layout_info = { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, .bindingCount = pipeline_layout.object_bindings_count, .pBindings = pipeline_layout.object_bindings, }; result = vkCreateDescriptorSetLayout(device, &mesh_layout_info, 0, &object_set_layout); if(result != VK_SUCCESS) { return zero_material; } VkDescriptorSetLayout all_layouts[3] = {scene_ubo_layout, material_set_layout, object_set_layout}; VkPipelineLayout layout; VkPipelineLayoutCreateInfo layout_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, .setLayoutCount = 3, .pSetLayouts = all_layouts, .pushConstantRangeCount = 0, .pPushConstantRanges = 0, }; result = vkCreatePipelineLayout(device, &layout_info, 0, &layout); if(result != VK_SUCCESS) { return zero_material; } VkPipeline pipeline = create_graphics_pipeline(device, extent, layout, render_pass, shader_stage_count, shader_stages, mesh_type); if(pipeline == VK_NULL_HANDLE) { return zero_material; } Material material = { .layout = layout, .pipeline = pipeline, .material_set_layout = material_set_layout, .object_set_layout = object_set_layout, .material_descriptors = material_descriptors, .material_descriptor_pool = material_descriptor_pool, .material_descriptors_count = max_frames_in_flight, .object_descriptor_mappings = object_descriptor_mappings, }; return material; } Material create_simple_mesh_material(VkDevice device, VkExtent2D extent, VkRenderPass render_pass, VkDescriptorSetLayout scene_ubo_layout, uint32_t max_frames_in_flight) { VkShaderModule vert_shader = load_shader_file(2048, "shader_src/basic.vert.spv", device); VkShaderModule frag_shader = load_shader_file(2048, "shader_src/basic.frag.spv", device); VkPipelineShaderStageCreateInfo shader_stages[2] = { { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_VERTEX_BIT, .module = vert_shader, .pName = "main", }, { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_FRAGMENT_BIT, .module = frag_shader, .pName = "main", }, }; VkVertexInputBindingDescription bindings[1] = { { .binding = 0, // Which buffer 'binding' to use .stride = sizeof(struct Vertex), // How many bytes to increase the index between instance .inputRate = VK_VERTEX_INPUT_RATE_VERTEX, // Whether an instance is a vertex or an index }, }; VkVertexInputAttributeDescription attributes[2] = { { .binding = 0, // Which buffer 'binding' to use .location = 0, // Which 'location' to export as to shader .format = VK_FORMAT_R32G32B32_SFLOAT, // What format to interpret as for shader .offset = offsetof(struct Vertex, pos), // What offset from instance start }, { .binding = 0, .location = 1, .format = VK_FORMAT_R32G32B32_SFLOAT, .offset = offsetof(struct Vertex, color), }, }; MeshType simple_mesh_type = { .bindings = bindings, .bindings_count = sizeof(bindings)/sizeof(VkVertexInputBindingDescription), .attributes = attributes, .attributes_count = sizeof(attributes)/sizeof(VkVertexInputAttributeDescription), }; VkDescriptorSetLayoutBinding object_set_bindings[] = { { .binding = 0, .descriptorCount = 1, .descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, .pImmutableSamplers = 0, .stageFlags = VK_SHADER_STAGE_VERTEX_BIT, }, }; PipelineLayout simple_layout = { .object_bindings = object_set_bindings, .object_bindings_count = sizeof(object_set_bindings)/sizeof(VkDescriptorSetLayoutBinding), }; Map object_descriptor_mappings = map_create(8, 2); if(object_descriptor_mappings.buckets == 0) { Material tmp = {}; return tmp; } Mapping* position_mapping = malloc(sizeof(Mapping)); if(position_mapping == 0) { map_destroy(object_descriptor_mappings); Material tmp = {}; return tmp; } position_mapping->mapping_type = MAPPING_POSITION_TO_MATRIX; position_mapping->index = 0; bool map_result = map_add(&object_descriptor_mappings, ATTRIBUTE_ID_POSITION, position_mapping); if(map_result != true) { map_destroy(object_descriptor_mappings); free(position_mapping); Material tmp = {}; return tmp; } return create_material(device, extent, render_pass, 2, shader_stages, scene_ubo_layout, simple_layout, simple_mesh_type, max_frames_in_flight, object_descriptor_mappings); } Material create_texture_mesh_material(VkDevice device, VkExtent2D extent, VkRenderPass render_pass, VkDescriptorSetLayout scene_ubo_layout, uint32_t max_frames_in_flight) { VkShaderModule vert_shader = load_shader_file(2048, "shader_src/texture.vert.spv", device); if(vert_shader == VK_NULL_HANDLE) { Material tmp = {}; return tmp; } VkShaderModule frag_shader = load_shader_file(2048, "shader_src/texture.frag.spv", device); if(frag_shader == VK_NULL_HANDLE) { Material tmp = {}; return tmp; } VkPipelineShaderStageCreateInfo shader_stages[2] = { { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_VERTEX_BIT, .module = vert_shader, .pName = "main", }, { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_FRAGMENT_BIT, .module = frag_shader, .pName = "main", }, }; VkVertexInputBindingDescription bindings[] = { { .binding = 0, .stride = sizeof(struct TextureVertex), .inputRate = VK_VERTEX_INPUT_RATE_VERTEX, }, }; VkVertexInputAttributeDescription attributes[] = { { .binding = 0, .location = 0, .format = VK_FORMAT_R32G32B32_SFLOAT, .offset = offsetof(struct TextureVertex, pos), }, { .binding = 0, .location = 1, .format = VK_FORMAT_R32G32B32_SFLOAT, .offset = offsetof(struct TextureVertex, color), }, { .binding = 0, .location = 2, .format = VK_FORMAT_R32G32_SFLOAT, .offset = offsetof(struct TextureVertex, tex), }, }; VkDescriptorSetLayoutBinding mesh_set_bindings[] = { { .binding = 0, .descriptorCount = 1, .descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, .pImmutableSamplers = 0, .stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT, }, { .binding = 1, .descriptorCount = 1, .descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, .pImmutableSamplers = 0, .stageFlags = VK_SHADER_STAGE_VERTEX_BIT, }, }; MeshType textured_mesh_type = { .bindings = bindings, .bindings_count = sizeof(bindings)/sizeof(VkVertexInputBindingDescription), .attributes = attributes, .attributes_count = sizeof(attributes)/sizeof(VkVertexInputAttributeDescription), }; PipelineLayout texture_layout = { .object_bindings_count = sizeof(mesh_set_bindings)/sizeof(VkDescriptorSetLayoutBinding), .object_bindings = mesh_set_bindings, }; Map object_descriptor_mappings = map_create(8, 2); if(object_descriptor_mappings.buckets == 0) { Material tmp = {}; return tmp; } Mapping* position_mapping = malloc(sizeof(Mapping)); if(position_mapping == 0) { map_destroy(object_descriptor_mappings); Material tmp = {}; return tmp; } position_mapping->mapping_type = MAPPING_POSITION_TO_MATRIX; position_mapping->index = 0; bool map_result = map_add(&object_descriptor_mappings, ATTRIBUTE_ID_POSITION, position_mapping); if(map_result != true) { map_destroy(object_descriptor_mappings); free(position_mapping); Material tmp = {}; return tmp; } return create_material(device, extent, render_pass, 2, shader_stages, scene_ubo_layout, texture_layout, textured_mesh_type, max_frames_in_flight, object_descriptor_mappings); } typedef struct MemoryChunkStruct { VkDeviceMemory memory; VkDeviceSize used; VkDeviceSize allocated; } MemoryChunk; VkResult allocate_memory_chunk(uint32_t memory_type, VkDevice device, VkDeviceSize size, MemoryChunk* allocated) { if(allocated == NULL) { return VK_ERROR_UNKNOWN; } VkMemoryAllocateInfo allocate_info = { .sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, .memoryTypeIndex = memory_type, .allocationSize = size, }; VkResult result = vkAllocateMemory(device, &allocate_info, 0, &allocated->memory); if(result != VK_SUCCESS) { return result; } allocated->used = 0; allocated->allocated = size; return VK_SUCCESS; } VkResult create_image(MemoryChunk* memory, VkDevice device, VkDeviceSize offset, VkImageType type, VkFormat format, VkExtent3D extent, VkImageUsageFlags usage, VkImage* image) { if(image == NULL) { return VK_ERROR_UNKNOWN; } else if (*image != VK_NULL_HANDLE) { return VK_ERROR_UNKNOWN; } else if (memory == NULL) { return VK_ERROR_UNKNOWN; } VkImageCreateInfo image_info = { .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, .imageType = type, .extent = extent, .mipLevels = 1, .arrayLayers = 1, .format = format, .tiling = VK_IMAGE_TILING_OPTIMAL, .initialLayout = VK_IMAGE_LAYOUT_UNDEFINED, .usage = usage, .sharingMode = VK_SHARING_MODE_EXCLUSIVE, .samples = VK_SAMPLE_COUNT_1_BIT, .flags = 0, }; VkResult result = vkCreateImage(device, &image_info, 0, image); if(result != VK_SUCCESS) { return result; } result = vkBindImageMemory(device, *image, memory->memory, offset); if(result != VK_SUCCESS) { vkDestroyImage(device, *image, 0); *image = VK_NULL_HANDLE; return result; } VkMemoryRequirements memory_requirements; vkGetImageMemoryRequirements(device, *image, &memory_requirements); memory->used += memory_requirements.size; return VK_SUCCESS; } VkResult create_buffer(MemoryChunk* memory, VkDevice device, VkDeviceSize size, VkBufferUsageFlags usage, VkBuffer* buffer) { if(buffer == NULL) { fprintf(stderr, "buffer is null\n"); return VK_ERROR_UNKNOWN; } else if (*buffer != VK_NULL_HANDLE) { fprintf(stderr, "buffer has value\n"); return VK_ERROR_UNKNOWN; } else if (memory == NULL) { fprintf(stderr, "memory is null\n"); return VK_ERROR_UNKNOWN; } else if ((memory->allocated - memory->used) < size) { fprintf(stderr, "memory has not enough space\n"); return VK_ERROR_UNKNOWN; } VkBufferCreateInfo buffer_info = { .sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO, .size = size, .usage = usage, .sharingMode = VK_SHARING_MODE_EXCLUSIVE, }; VkResult result = vkCreateBuffer(device, &buffer_info, 0, buffer); if(result != VK_SUCCESS) { fprintf(stderr, "vkCreateBuffer returned %d\n", result); return result; } VkMemoryRequirements memory_requirements; vkGetBufferMemoryRequirements(device, *buffer, &memory_requirements); result = vkBindBufferMemory(device, *buffer, memory->memory, memory->used); if(result != VK_SUCCESS) { vkDestroyBuffer(device, *buffer, 0); *buffer = VK_NULL_HANDLE; fprintf(stderr, "vkBindBufferMemory returned %d\n", result); return result; } memory->used += size; return VK_SUCCESS; } VkResult create_buffers(MemoryChunk* memory, VkDevice device, VkDeviceSize size, VkBufferUsageFlags usage, VkBuffer** buffers, uint32_t count) { if(buffers == NULL) { return VK_ERROR_UNKNOWN; } else if(*buffers == NULL) { return VK_ERROR_UNKNOWN; } *buffers = malloc(sizeof(VkBuffer)*count); if(*buffers == NULL) { return VK_ERROR_OUT_OF_HOST_MEMORY; } for(uint32_t i = 0; i < count; i++) { VkResult result = create_buffer(memory, device, size, usage, &(*buffers)[i]); if(result != VK_SUCCESS) { for(uint32_t j = 0; j < i; j++) { vkDestroyBuffer(device, *buffers[j], 0); } free(buffers); return result; } } return VK_SUCCESS; } VkResult command_copy_to_image(VkDevice device, VkBuffer staging_buffer, VkDeviceMemory staging_memory, VkImage destination, void* data, VkExtent3D size, VkDeviceSize stride, VkCommandPool pool, VkQueue queue) { VkDeviceSize data_size = size.height * size.width * stride; void* mapped_ptr = NULL; VkResult result = vkMapMemory(device, staging_memory, 0, data_size, 0, &mapped_ptr); if(result != VK_SUCCESS) { vkDestroyBuffer(device, staging_buffer, 0); return result; } memcpy(mapped_ptr, data, data_size); vkUnmapMemory(device, staging_memory); VkCommandBuffer command_buffer = command_begin_single(device, pool); if(command_buffer == VK_NULL_HANDLE) { vkDestroyBuffer(device, staging_buffer, 0); return VK_ERROR_UNKNOWN; } VkBufferImageCopy region = { .bufferOffset = 0, .bufferRowLength = 0, .bufferImageHeight = 0, .imageSubresource = { .baseArrayLayer = 0, .layerCount = 1, .mipLevel = 0, .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, }, .imageOffset = { .x = 0, .y = 0, .z = 0, }, .imageExtent = size, }; vkCmdCopyBufferToImage(command_buffer, staging_buffer, destination, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ®ion); result = command_end_single(device, command_buffer, pool, queue); vkDestroyBuffer(device, staging_buffer, 0); return result; } VkResult command_copy_to_buffer(VkDevice device, VkBuffer staging_buffer, VkDeviceMemory staging_memory, VkBuffer destination, void* data, VkDeviceSize size, VkDeviceSize offset, VkCommandPool pool, VkQueue queue) { void* mapped_ptr = NULL; VkResult result = vkMapMemory(device, staging_memory, 0, size, 0, &mapped_ptr); if(result != VK_SUCCESS) { vkDestroyBuffer(device, staging_buffer, 0); return result; } memcpy(mapped_ptr, data, size); vkUnmapMemory(device, staging_memory); VkCommandBuffer command_buffer = command_begin_single(device, pool); if(command_buffer == VK_NULL_HANDLE) { vkDestroyBuffer(device, staging_buffer, 0); return VK_ERROR_UNKNOWN; } VkBufferCopy region = { .srcOffset = 0, .dstOffset = offset, .size = size, }; vkCmdCopyBuffer(command_buffer, staging_buffer, destination, 1, ®ion); result = command_end_single(device, command_buffer, pool, queue); return result; } Mesh* load_mesh_to_buffer(VkDevice device, MemoryChunk* memory, VkBuffer staging_buffer, VkDeviceMemory staging_memory, uint32_t vertex_count, uint32_t vertex_stride, void* vertex_data, uint32_t index_count, uint32_t index_stride, void* index_data, VkCommandPool pool, VkQueue queue) { VkBuffer vertex_buffer = VK_NULL_HANDLE; VkBuffer index_buffer = VK_NULL_HANDLE; VkResult result = create_buffer(memory, device, vertex_count*vertex_stride, VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, &vertex_buffer); if(result != VK_SUCCESS) { fprintf(stderr, "Failed to create vertex buffer\n"); return NULL; } result = create_buffer(memory, device, sizeof(uint16_t)*index_count, VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, &index_buffer); if(result != VK_SUCCESS) { fprintf(stderr, "Failed to create index buffer\n"); return NULL; } result = command_copy_to_buffer(device, staging_buffer, staging_memory, vertex_buffer, vertex_data, vertex_count*vertex_stride, 0, pool, queue); if(result != VK_SUCCESS) { fprintf(stderr, "Failed to copy to vertex buffer\n"); return NULL; } result = command_copy_to_buffer(device, staging_buffer, staging_memory, index_buffer, index_data, index_stride*index_count, 0, pool, queue); if(result != VK_SUCCESS) { fprintf(stderr, "Failed to copy to index buffer\n"); return NULL; } Mesh* mesh = malloc(sizeof(Mesh)); if(mesh == NULL) { return NULL; } mesh->vertex_buffer = vertex_buffer; mesh->vertex_count = vertex_count; mesh->index_buffer = index_buffer; mesh->index_count = index_count; return mesh; } VulkanContext* init_vulkan(GLFWwindow* window, uint32_t max_frames_in_flight) { VulkanContext* context = (VulkanContext*)malloc(sizeof(VulkanContext)); VkInstance instance = create_instance(); if(instance == VK_NULL_HANDLE) { fprintf(stderr, "failed to initialize vulkan instance\n"); return 0; } else { context->instance = instance; } VkDebugUtilsMessengerEXT debug_messenger = create_debug_messenger(context->instance); if(debug_messenger == VK_NULL_HANDLE) { fprintf(stderr, "failed to initialize vulkan debug messenger\n"); return 0; } else { context->debug_messenger = debug_messenger; } VkPhysicalDevice physical_device = get_best_physical_device(context->instance); if(physical_device == VK_NULL_HANDLE) { fprintf(stderr, "failed to pick vulkan physical device\n"); return 0; } else { context->physical_device = physical_device; } vkGetPhysicalDeviceMemoryProperties(context->physical_device, &context->memories); VkSurfaceKHR surface; VkResult result = glfwCreateWindowSurface(instance, window, 0, &surface); if(result != VK_SUCCESS) { fprintf(stderr, "failed to create vulkan surface\n"); return 0; } else { context->surface = surface; } QueueIndices queue_indices = get_queue_indices(context->physical_device, context->surface); if(check_queue_indices(queue_indices) == false) { fprintf(stderr, "failed to get vulkan queue indices\n"); return 0; } else { context->queue_indices = queue_indices; } VkDevice device = create_logical_device(context->physical_device, context->queue_indices); if(device == VK_NULL_HANDLE) { fprintf(stderr, "failed to create vulkan logical device\n"); return 0; } else { context->device = device; } vkGetDeviceQueue(device, context->queue_indices.graphics_family, context->queue_indices.graphics_index, &context->queues.graphics); vkGetDeviceQueue(device, context->queue_indices.present_family, context->queue_indices.present_index, &context->queues.present); vkGetDeviceQueue(device, context->queue_indices.transfer_family, context->queue_indices.transfer_index, &context->queues.transfer); SwapchainDetails swapchain_details = get_swapchain_details(context->physical_device, context->surface); if(swapchain_details.formats == 0) { fprintf(stderr, "failed to create vulkan logical device\n"); return 0; } else { context->swapchain_details = swapchain_details; } context->swapchain_format = choose_swapchain_format(context->swapchain_details); context->swapchain_present_mode = choose_present_mode(context->swapchain_details); context->swapchain_extent = choose_swapchain_extent(context->swapchain_details); VkSwapchainKHR swapchain = create_swapchain(context->device, context->swapchain_format, context->swapchain_present_mode, context->swapchain_extent, context->surface, context->swapchain_details.capabilities, context->queue_indices, VK_NULL_HANDLE); if(swapchain == VK_NULL_HANDLE) { fprintf(stderr, "failed to create vulkan swapchain\n"); return 0; } else { context->swapchain = swapchain; } SwapchainImages swapchain_images = get_swapchain_images(context->device, context->swapchain); if(swapchain_images.count == 0) { fprintf(stderr, "failed to get vulkan swapchain images\n"); return 0; } else { context->swapchain_image_count = swapchain_images.count; context->swapchain_images = swapchain_images.images; } VkImageView* image_views = create_image_views(context->device, context->swapchain_image_count, context->swapchain_images, context->swapchain_format); if(image_views == 0) { fprintf(stderr, "failed to create vulkan image views\n"); return 0; } else { context->swapchain_image_views = image_views; } VkFormat requested[] = { VK_FORMAT_D32_SFLOAT, VK_FORMAT_D32_SFLOAT_S8_UINT, VK_FORMAT_D24_UNORM_S8_UINT }; VkFormat depth_format = find_depth_format(context->physical_device, 3, requested, VK_IMAGE_TILING_OPTIMAL, VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT); if(depth_format == VK_FORMAT_MAX_ENUM) { fprintf(stderr, "failed to find a suitable depth image format\n"); return 0; } else { context->depth_format = depth_format; } VkCommandPoolCreateInfo extra_pool_info = { .sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO, .queueFamilyIndex = context->queue_indices.graphics_family, .flags = VK_COMMAND_POOL_CREATE_TRANSIENT_BIT, }; result = vkCreateCommandPool(context->device, &extra_pool_info, 0, &context->extra_graphics_pool); if(result != VK_SUCCESS) { fprintf(stderr, "failed to create extra graphics command pool\n"); return 0; } if(create_depth_image(context) != 0) { fprintf(stderr, "failed to create depth image\n"); return 0; } VkRenderPass render_pass = create_render_pass(context->device, context->swapchain_format, context->depth_format); if(render_pass == VK_NULL_HANDLE) { fprintf(stderr, "failed to create vulkan render pass\n"); return 0; } else { context->render_pass = render_pass; } VkFramebuffer* framebuffers = create_swapchain_framebuffers(context->device, context->swapchain_image_count, context->swapchain_image_views, context->depth_image_view, context->render_pass, context->swapchain_extent); if(framebuffers == 0) { fprintf(stderr, "failed to create vulkan framebuffers\n"); return 0; } else { context->swapchain_framebuffers = framebuffers; } VkCommandPoolCreateInfo graphics_pool_info = { .sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO, .flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT, .queueFamilyIndex = context->queue_indices.graphics_family, }; VkCommandPool graphics_command_pool; result = vkCreateCommandPool(context->device, &graphics_pool_info, 0, &graphics_command_pool); if(result != VK_SUCCESS) { fprintf(stderr, "failed to create vulkan graphics command pool"); return 0; } else { context->graphics_command_pool = graphics_command_pool; } VkCommandPoolCreateInfo transfer_pool_info = { .sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO, .flags = VK_COMMAND_POOL_CREATE_TRANSIENT_BIT, .queueFamilyIndex = context->queue_indices.transfer_family, }; VkCommandPool transfer_command_pool; result = vkCreateCommandPool(context->device, &transfer_pool_info, 0, &transfer_command_pool); if(result != VK_SUCCESS) { fprintf(stderr, "failed to create vulkan transfer command pool"); return 0; } else { context->transfer_command_pool = transfer_command_pool; } context->max_frames_in_flight = max_frames_in_flight; VkCommandBuffer* swapchain_command_buffers = create_command_buffers(context->device, context->graphics_command_pool, max_frames_in_flight); if(swapchain_command_buffers == VK_NULL_HANDLE) { fprintf(stderr, "failed to create vulkan swapchain command buffer\n"); return 0; } else { context->swapchain_command_buffers = swapchain_command_buffers; } VkSemaphore* ia_semaphores = create_semaphores(context->device, 0, max_frames_in_flight); if(ia_semaphores == 0) { fprintf(stderr, "failed to create vulkan image available semaphores\n"); return 0; } else { context->image_available_semaphores = ia_semaphores; } VkSemaphore* rf_semaphores = create_semaphores(context->device, 0, max_frames_in_flight); if(rf_semaphores == 0) { fprintf(stderr, "failed to create vulkan render finished semaphores\n"); return 0; } else { context->render_finished_semaphores = rf_semaphores; } VkFence* if_fences = create_fences(context->device, VK_FENCE_CREATE_SIGNALED_BIT, max_frames_in_flight); if(if_fences == 0) { fprintf(stderr, "failed to create vulkan in flight fence\n"); return 0; } else { context->in_flight_fences = if_fences; } return context; } SceneContext create_scene_context(VkDevice device, VkPhysicalDeviceMemoryProperties memories, uint32_t max_frames_in_flight) { SceneContext ret = { .pool = VK_NULL_HANDLE, .descriptor_layout = VK_NULL_HANDLE, .descriptors = 0, .ubos = 0, .ubo_ptrs = 0, }; VkDescriptorPoolSize pool_sizes[] = { { .type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, .descriptorCount = max_frames_in_flight, } }; VkDescriptorPoolCreateInfo pool_info = { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO, .poolSizeCount = 1, .pPoolSizes = pool_sizes, .maxSets = max_frames_in_flight, }; VkDescriptorPool pool; VkResult result = vkCreateDescriptorPool(device, &pool_info, 0, &pool); if(result != VK_SUCCESS) { return ret; } VkDescriptorSetLayoutBinding layout_bindings[] = { { .binding = 0, .stageFlags = VK_SHADER_STAGE_VERTEX_BIT, .descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, .descriptorCount = 1, .pImmutableSamplers = 0, } }; VkDescriptorSetLayoutCreateInfo layout_info = { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, .bindingCount = 1, .pBindings = layout_bindings, }; VkDescriptorSetLayout layout; result = vkCreateDescriptorSetLayout(device, &layout_info, 0, &layout); if(result != VK_SUCCESS) { vkDestroyDescriptorPool(device, pool, 0); return ret; } VkDescriptorSetLayout* layouts = malloc(sizeof(VkDescriptorSetLayout)*max_frames_in_flight); if(layouts == 0) { vkDestroyDescriptorPool(device, pool, 0); return ret; } for(uint32_t i = 0; i < max_frames_in_flight; i++) { layouts[i] = layout; } VkDescriptorSet* sets = malloc(sizeof(VkDescriptorSet)*max_frames_in_flight); if(sets == 0) { free(layouts); vkDestroyDescriptorPool(device, pool, 0); return ret; } VkDescriptorSetAllocateInfo set_alloc_info = { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO, .descriptorPool = pool, .descriptorSetCount = max_frames_in_flight, .pSetLayouts = layouts, }; result = vkAllocateDescriptorSets(device, &set_alloc_info, sets); if(result != VK_SUCCESS) { free(layouts); free(sets); vkDestroyDescriptorPool(device, pool, 0); return ret; } AllocatedBuffer* ubos = allocate_buffers(memories, device, sizeof(struct SceneUBO), VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, max_frames_in_flight, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, VK_MEMORY_PROPERTY_HOST_COHERENT_BIT); if(ubos == 0) { free(layouts); free(sets); vkFreeDescriptorSets(device, pool, max_frames_in_flight, sets); vkDestroyDescriptorPool(device, pool, 0); return ret; } void** ubo_ptrs = malloc(sizeof(void*)*max_frames_in_flight); if(ubo_ptrs == 0) { free(layouts); free(sets); vkFreeDescriptorSets(device, pool, max_frames_in_flight, sets); vkDestroyDescriptorPool(device, pool, 0); for(uint32_t i = 0; i < max_frames_in_flight; i++) { deallocate_buffer(device, ubos[i]); } free(ubos); return ret; } for(uint32_t i = 0; i < max_frames_in_flight; i++) { VkResult result = vkMapMemory(device, ubos[i].memory, 0, sizeof(struct SceneUBO), 0, &ubo_ptrs[i]); if(result != VK_SUCCESS) { for(uint32_t j = 0; j < i; j++) { vkUnmapMemory(device, ubos[j].memory); } free(layouts); free(sets); vkFreeDescriptorSets(device, pool, max_frames_in_flight, sets); vkDestroyDescriptorPool(device, pool, 0); for(uint32_t i = 0; i < max_frames_in_flight; i++) { deallocate_buffer(device, ubos[i]); } free(ubos); return ret; } VkDescriptorBufferInfo buffer_info = { .buffer = ubos[i].buffer, .offset = 0, .range = sizeof(struct SceneUBO), }; VkWriteDescriptorSet write = { .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, .dstSet = sets[i], .dstBinding = 0, .dstArrayElement = 0, .descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, .descriptorCount = 1, .pBufferInfo = &buffer_info, }; vkUpdateDescriptorSets(device, 1, &write, 0, 0); } SceneContext scene = { .pool = pool, .descriptor_layout = layout, .descriptors = sets, .ubos = ubos, .ubo_ptrs = ubo_ptrs, }; return scene; } struct { bool forward; bool backward; bool left; bool right; bool up; bool down; bool turn_left; bool turn_right; bool turn_up; bool turn_down; bool roll_left; bool roll_right; } key_flags = { .forward = false, .backward = false, .left = false, .right = false, .turn_left = false, .turn_right = false, .turn_up = false, .turn_down = false, .roll_left = false, .roll_right = false, }; void key_callback(GLFWwindow* window, int key, int scancode, int action, int mods) { (void)scancode; (void)window; (void)mods; switch(key) { case GLFW_KEY_W: if(action == GLFW_PRESS) { key_flags.forward = true; } else if(action == GLFW_RELEASE) { key_flags.forward = false; } break; case GLFW_KEY_A: if(action == GLFW_PRESS) { key_flags.left = true; } else if(action == GLFW_RELEASE) { key_flags.left = false; } break; case GLFW_KEY_S: if(action == GLFW_PRESS) { key_flags.backward = true; } else if(action == GLFW_RELEASE) { key_flags.backward = false; } break; case GLFW_KEY_D: if(action == GLFW_PRESS) { key_flags.right = true; } else if(action == GLFW_RELEASE) { key_flags.right = false; } break; case GLFW_KEY_SPACE: if(action == GLFW_PRESS) { key_flags.up = true; } else if(action == GLFW_RELEASE) { key_flags.up = false; } break; case GLFW_KEY_LEFT_SHIFT: if(action == GLFW_PRESS) { key_flags.down = true; } else if(action == GLFW_RELEASE) { key_flags.down = false; } break; case GLFW_KEY_RIGHT: if(action == GLFW_PRESS) { key_flags.turn_right = true; } else if(action == GLFW_RELEASE) { key_flags.turn_right = false; } break; case GLFW_KEY_LEFT: if(action == GLFW_PRESS) { key_flags.turn_left = true; } else if(action == GLFW_RELEASE) { key_flags.turn_left = false; } break; case GLFW_KEY_UP: if(action == GLFW_PRESS) { key_flags.turn_up = true; } else if(action == GLFW_RELEASE) { key_flags.turn_up = false; } break; case GLFW_KEY_DOWN: if(action == GLFW_PRESS) { key_flags.turn_down = true; } else if(action == GLFW_RELEASE) { key_flags.turn_down = false; } break; case GLFW_KEY_Q: if(action == GLFW_PRESS) { key_flags.roll_left = true; } else if(action == GLFW_RELEASE) { key_flags.roll_left = false; } break; case GLFW_KEY_E: if(action == GLFW_PRESS) { key_flags.roll_right = true; } else if(action == GLFW_RELEASE) { key_flags.roll_right = false; } break; } } vec3 world_position = {0.0f, 0.0f, 0.0f}; versor world_rotation = {-1.0f, 0.0f, 0.0f, 0.0f}; VkResult update_scene_descriptor(void** buffers, uint32_t frame_index, vec3 world_position, versor world_rotation, float aspect_ratio, float time_delta) { vec3 movement_sum = {0.0f, 0.0f, 0.0f}; if(key_flags.forward) { movement_sum[2] -= 1 * time_delta; } if(key_flags.backward) { movement_sum[2] += 1 * time_delta; } if(key_flags.right) { movement_sum[0] += 1 * time_delta; } if(key_flags.left) { movement_sum[0] -= 1 * time_delta; } if(key_flags.up) { movement_sum[1] -= 1 * time_delta; } if(key_flags.down) { movement_sum[1] += 1 * time_delta; } vec3 eular_rotation = {0.0f, 0.0f, 0.0f}; if(key_flags.turn_right) { eular_rotation[0] -= 1 * time_delta; } if(key_flags.turn_left) { eular_rotation[0] += 1 * time_delta; } if(key_flags.turn_up) { eular_rotation[1] -= 1 * time_delta; } if(key_flags.turn_down) { eular_rotation[1] += 1 * time_delta; } if(key_flags.roll_right) { eular_rotation[2] += 1 * time_delta; } if(key_flags.roll_left) { eular_rotation[2] -= 1 * time_delta; } vec3 right = {1.0f, 0.0f, 0.0f}; vec3 up = {0.0f, 1.0f, 0.0f}; vec3 forward = {0.0f, 0.0f, 1.0f}; glm_quat_rotatev(world_rotation, right, right); glm_quat_rotatev(world_rotation, up, up); glm_quat_rotatev(world_rotation, forward, forward); versor relative_rotation_y; glm_quatv(relative_rotation_y, eular_rotation[1], right); versor relative_rotation_x; glm_quatv(relative_rotation_x, eular_rotation[0], up); versor relative_rotation_z; glm_quatv(relative_rotation_z, eular_rotation[2], forward); glm_quat_mul(relative_rotation_x, world_rotation, world_rotation); glm_quat_mul(relative_rotation_y, world_rotation, world_rotation); glm_quat_mul(relative_rotation_z, world_rotation, world_rotation); vec3 movement_rot; glm_quat_rotatev(world_rotation, movement_sum, movement_rot); glm_vec3_add(movement_rot, world_position, world_position); struct SceneUBO ubo = {}; glm_perspective(1.5708f, aspect_ratio, 0.01, 1000, ubo.proj); glm_quat_look(world_position, world_rotation, ubo.view); memcpy(buffers[frame_index], (void*)&ubo, sizeof(ubo)); return VK_SUCCESS; } VkResult draw_frame(VulkanContext* context, SceneContext* scene, uint32_t materials_count, Material* materials, uint32_t* objects_counts, Object** objects) { update_scene_descriptor(scene->ubo_ptrs, context->current_frame, world_position, world_rotation, (float)context->swapchain_extent.width/(float)context->swapchain_extent.height, 0.01); VkResult result; result = vkWaitForFences(context->device, 1, &context->in_flight_fences[context->current_frame], VK_TRUE, UINT64_MAX); if(result != VK_SUCCESS) { return result; } uint32_t image_index; result = vkAcquireNextImageKHR(context->device, context->swapchain, UINT64_MAX, context->image_available_semaphores[context->current_frame], VK_NULL_HANDLE, &image_index); if(result != VK_SUCCESS) { return result; } result = vkResetFences(context->device, 1, &context->in_flight_fences[context->current_frame]); if(result != VK_SUCCESS) { return result; } result = vkResetCommandBuffer(context->swapchain_command_buffers[context->current_frame], 0); if(result != VK_SUCCESS) { return result; } result = command_draw_scene(materials_count, materials, objects_counts, objects, context->current_frame, scene->descriptors, context->swapchain_command_buffers[context->current_frame], context->render_pass, context->swapchain_framebuffers[image_index], context->swapchain_extent); if(result != VK_SUCCESS) { return result; } VkPipelineStageFlags wait_stages[] = {VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT}; VkSubmitInfo submit_info = { .sType = VK_STRUCTURE_TYPE_SUBMIT_INFO, .waitSemaphoreCount = 1, .pWaitSemaphores = &context->image_available_semaphores[context->current_frame], .pWaitDstStageMask = wait_stages, .commandBufferCount = 1, .pCommandBuffers = &context->swapchain_command_buffers[context->current_frame], .signalSemaphoreCount = 1, .pSignalSemaphores = &context->render_finished_semaphores[context->current_frame], }; result = vkQueueSubmit(context->queues.graphics, 1, &submit_info, context->in_flight_fences[context->current_frame]); if(result != VK_SUCCESS) { return result; } VkPresentInfoKHR present_info = { .sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR, .waitSemaphoreCount = 1, .pWaitSemaphores = &context->render_finished_semaphores[context->current_frame], .swapchainCount = 1, .pSwapchains = &context->swapchain, .pImageIndices = &image_index, .pResults = 0, }; return vkQueuePresentKHR(context->queues.present, &present_info); } Object create_simple_mesh_object(Material* simple_mesh_material, VkPhysicalDeviceMemoryProperties memories, VkDevice device, VkCommandPool transfer_pool, VkQueue transfer_queue, uint32_t max_frames_in_flight, VkDescriptorPool pool) { Object zero = {}; MemoryChunk mesh_memory = {0}; VkResult result = allocate_memory_chunk(0, device, 10000, &mesh_memory); if(result != VK_SUCCESS) { return zero; } MemoryChunk transfer_memory = {0}; result = allocate_memory_chunk(2, device, 10000, &transfer_memory); if(result != VK_SUCCESS) { return zero; } VkBuffer transfer_buffer = VK_NULL_HANDLE; result = create_buffer(&transfer_memory, device, 10000, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, &transfer_buffer); if(result != VK_SUCCESS) { return zero; } Mesh* mesh = load_mesh_to_buffer(device, &mesh_memory, transfer_buffer, transfer_memory.memory, 4, sizeof(struct Vertex), (void*)vertices, 6, sizeof(uint16_t), (void*)indices, transfer_pool, transfer_queue); if(mesh == 0) { return zero; } VkDescriptorSetLayout* layouts = malloc(sizeof(VkDescriptorSetLayout)*max_frames_in_flight); if(layouts == 0) { return zero; } for(uint32_t i = 0; i < max_frames_in_flight; i++) { layouts[i] = simple_mesh_material->object_set_layout; } VkDescriptorSetAllocateInfo allocation_info = { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO, .pSetLayouts = layouts, .descriptorSetCount = max_frames_in_flight, .descriptorPool = pool, }; VkDescriptorSet* sets = malloc(sizeof(VkDescriptorSet)*max_frames_in_flight); if(sets == 0) { return zero; } result = vkAllocateDescriptorSets(device, &allocation_info, sets); if(result != VK_SUCCESS) { return zero; } Object object = create_renderable(mesh, simple_mesh_material, 1, sets, max_frames_in_flight); if(object.attributes.buckets == 0) { return zero; } Position* position = malloc(sizeof(Position)); if(position == 0) { return zero; } glm_quat_identity(position->rotation); position->scale[0] = 10.f; position->scale[1] = 10.f; position->scale[2] = 10.f; position->position[0] = 0.0f; position->position[1] = 0.0f; position->position[2] = 1.1f; bool map_result = map_add(&object.attributes, ATTRIBUTE_ID_POSITION, position); if(map_result == 0) { return zero; } AllocatedBuffer* position_buffers = allocate_buffers(memories, device, sizeof(struct ModelUBO), VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, max_frames_in_flight, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, VK_MEMORY_PROPERTY_HOST_COHERENT_BIT); if(position_buffers == 0) { return zero; } MaybeValue maybe_ptrs = map_lookup(object.attributes, ATTRIBUTE_ID_DESCRIPTORS); if(maybe_ptrs.has_value == false) { return zero; } void*** ptrs = maybe_ptrs.value; for(uint32_t i = 0; i < max_frames_in_flight; i++) { VkResult result = vkMapMemory(device, position_buffers[i].memory, 0, sizeof(struct ModelUBO), 0, &ptrs[i][0]); if(result != VK_SUCCESS) { return zero; } VkDescriptorBufferInfo buffer_info = { .buffer = position_buffers[i].buffer, .offset = 0, .range = sizeof(struct ModelUBO), }; VkWriteDescriptorSet write_info = { .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, .dstSet = sets[i], .dstBinding = 0, .dstArrayElement = 0, .descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, .descriptorCount = 1, .pBufferInfo = &buffer_info, }; vkUpdateDescriptorSets(device, 1, &write_info, 0, 0); } return object; } Object create_texture_mesh_object(Material* texture_mesh_material, VkPhysicalDeviceMemoryProperties memories, VkDevice device, VkCommandPool transfer_pool, VkQueue transfer_queue, VkCommandPool graphics_pool, VkQueue graphics_queue, uint32_t max_frames_in_flight, VkDescriptorPool pool, uint32_t transfer_family, uint32_t graphics_family) { Object zero = {}; MemoryChunk mesh_memory = {0}; VkResult result = allocate_memory_chunk(0, device, 10000, &mesh_memory); if(result != VK_SUCCESS) { return zero; } MemoryChunk transfer_memory = {0}; result = allocate_memory_chunk(2, device, 10000, &transfer_memory); if(result != VK_SUCCESS) { return zero; } VkBuffer transfer_buffer = VK_NULL_HANDLE; result = create_buffer(&transfer_memory, device, 10000, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, &transfer_buffer); if(result != VK_SUCCESS) { return zero; } Mesh* mesh = load_mesh_to_buffer(device, &mesh_memory, transfer_buffer, transfer_memory.memory, 4, sizeof(struct TextureVertex), (void*)texture_vertices, 6, sizeof(uint16_t), (void*)indices, transfer_pool, transfer_queue); if(mesh == 0) { return zero; } VkDescriptorSetLayout* layouts = malloc(sizeof(VkDescriptorSetLayout)*max_frames_in_flight); if(layouts == 0) { return zero; } for(uint32_t i = 0; i < max_frames_in_flight; i++) { layouts[i] = texture_mesh_material->object_set_layout; } VkDescriptorSetAllocateInfo allocation_info = { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO, .descriptorPool = pool, .descriptorSetCount = max_frames_in_flight, .pSetLayouts = layouts, }; VkDescriptorSet* sets = malloc(sizeof(VkDescriptorSet)*max_frames_in_flight); if(sets == 0) { return zero; } result = vkAllocateDescriptorSets(device, &allocation_info, sets); if(result != VK_SUCCESS) { return zero; } Object object = create_renderable(mesh, texture_mesh_material, 1, sets, max_frames_in_flight); if(object.attributes.buckets == 0) { return zero; } Position* position = malloc(sizeof(Position)); if(position == 0) { return zero; } glm_quat_identity(position->rotation); position->scale[0] = 0.5f; position->scale[1] = 0.5f; position->scale[2] = 0.5f; position->position[0] = 0.0f; position->position[1] = 0.0f; position->position[2] = 1.0f; bool map_result = map_add(&object.attributes, ATTRIBUTE_ID_POSITION, position); if(map_result == 0) { return zero; } AllocatedBuffer* ubos = allocate_buffers(memories, device, sizeof(struct ModelUBO), VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, max_frames_in_flight, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, VK_MEMORY_PROPERTY_HOST_COHERENT_BIT); if(ubos == 0) { return zero; } MaybeValue maybe_ptrs = map_lookup(object.attributes, ATTRIBUTE_ID_DESCRIPTORS); if(maybe_ptrs.has_value == false) { return zero; } void*** ptrs = maybe_ptrs.value; for(uint32_t i = 0; i < max_frames_in_flight; i++) { VkResult result = vkMapMemory(device, ubos[i].memory, 0, sizeof(struct ModelUBO), 0, &ptrs[i][0]); if(result != VK_SUCCESS) { return zero; } VkDescriptorBufferInfo buffer_info = { .buffer = ubos[i].buffer, .offset = 0, .range = sizeof(struct ModelUBO), }; VkWriteDescriptorSet write_info = { .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, .dstSet = sets[i], .dstBinding = 1, .dstArrayElement = 0, .descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, .descriptorCount = 1, .pBufferInfo = &buffer_info, }; vkUpdateDescriptorSets(device, 1, &write_info, 0, 0); } VkExtent2D texture_size = { .width = 10, .height = 10, }; struct __attribute__((__packed__)) texel { uint8_t r; uint8_t g; uint8_t b; uint8_t a; }; struct texel WHT = {255, 255, 255, 255}; struct texel BLK = {0, 0, 0, 255}; struct texel RED = {255, 0, 0, 255}; struct texel GRN = {0, 255, 0, 255}; struct texel BLU = {0, 0, 255, 255}; struct texel texture_data[100] = { RED, WHT, GRN, WHT, BLU, WHT, RED, WHT, GRN, BLK, RED, WHT, GRN, WHT, BLU, WHT, RED, WHT, GRN, BLK, RED, WHT, GRN, WHT, BLU, WHT, RED, WHT, GRN, WHT, RED, WHT, GRN, WHT, BLU, WHT, RED, WHT, GRN, WHT, RED, WHT, GRN, WHT, BLU, WHT, RED, WHT, GRN, BLK, RED, WHT, GRN, WHT, BLU, WHT, RED, WHT, GRN, BLK, RED, WHT, GRN, WHT, BLU, WHT, RED, WHT, GRN, WHT, RED, WHT, GRN, WHT, BLU, WHT, RED, WHT, GRN, WHT, RED, WHT, GRN, WHT, BLU, WHT, RED, WHT, GRN, BLK, RED, WHT, GRN, WHT, BLU, WHT, RED, WHT, GRN, BLK, }; Texture test_texture = load_texture(memories, device, transfer_pool, transfer_queue, graphics_pool, graphics_queue, texture_size, 4, VK_FORMAT_R8G8B8A8_SRGB, texture_data, transfer_family, graphics_family); for(uint32_t i = 0; i < max_frames_in_flight; i++) { VkDescriptorImageInfo image_info = { .sampler = test_texture.sampler, .imageView = test_texture.view, .imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, }; VkWriteDescriptorSet descriptor_write = { .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, .dstSet = sets[i], .dstBinding = 0, .dstArrayElement = 0, .descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, .descriptorCount = 1, .pBufferInfo = 0, .pImageInfo = &image_info, .pTexelBufferView = 0, }; vkUpdateDescriptorSets(device, 1, &descriptor_write, 0, 0); } return object; } void main_loop(GLFWwindow* window, VulkanContext* context) { SceneContext scene = create_scene_context(context->device, context->memories, context->max_frames_in_flight); if(scene.pool == VK_NULL_HANDLE) { return; } Material simple_mesh_material = create_simple_mesh_material(context->device, context->swapchain_extent, context->render_pass, scene.descriptor_layout, context->max_frames_in_flight); if(simple_mesh_material.pipeline == VK_NULL_HANDLE) { fprintf(stderr, "failed to create simple mesh material\n"); return; } VkDescriptorPoolSize simple_pool_sizes[] = { { .type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, .descriptorCount = context->max_frames_in_flight, }, }; VkDescriptorPoolCreateInfo simple_pool_info = { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO, .poolSizeCount = 1, .pPoolSizes = simple_pool_sizes, .maxSets = context->max_frames_in_flight, }; VkDescriptorPool simple_pool; VkResult result = vkCreateDescriptorPool(context->device, &simple_pool_info, 0, &simple_pool); if(result != VK_SUCCESS) { fprintf(stderr, "failed to allocate simple_pool\n"); return; } Object triangle_object = create_simple_mesh_object(&simple_mesh_material, context->memories, context->device, context->transfer_command_pool, context->queues.transfer, context->max_frames_in_flight, simple_pool); if(triangle_object.attributes.buckets == 0) { fprintf(stderr, "failed to create simple mesh object\n"); return; } Material texture_mesh_material = create_texture_mesh_material(context->device, context->swapchain_extent, context->render_pass, scene.descriptor_layout, context->max_frames_in_flight); if(texture_mesh_material.pipeline == VK_NULL_HANDLE) { fprintf(stderr, "failed to create texture mesh material\n"); return; } VkDescriptorPoolSize texture_pool_sizes[] = { { .type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, .descriptorCount = context->max_frames_in_flight, }, { .type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, .descriptorCount = context->max_frames_in_flight, }, }; VkDescriptorPoolCreateInfo texture_pool_info = { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO, .poolSizeCount = sizeof(texture_pool_sizes)/sizeof(VkDescriptorPoolSize), .maxSets = context->max_frames_in_flight, .pPoolSizes = texture_pool_sizes, }; VkDescriptorPool texture_pool; result = vkCreateDescriptorPool(context->device, &texture_pool_info, 0, &texture_pool); if(result != VK_SUCCESS) { fprintf(stderr, "failed to create temporary descriptor pool\n"); return; } Object triangle_object_textured = create_texture_mesh_object(&texture_mesh_material, context->memories, context->device, context->transfer_command_pool, context->queues.transfer, context->extra_graphics_pool, context->queues.graphics, context->max_frames_in_flight, texture_pool, context->queue_indices.transfer_family, context->queue_indices.graphics_family); if(triangle_object_textured.attributes.buckets == 0) { fprintf(stderr, "failed to create texture mesh object\n"); return; } Object* objects[] = {&triangle_object, &triangle_object_textured}; Material materials[] = {simple_mesh_material, texture_mesh_material}; uint32_t objects_counts[] = {1, 1}; context->current_frame = 0; while(!glfwWindowShouldClose(window)) { glfwPollEvents(); VkResult result = draw_frame(context, &scene, sizeof(materials)/sizeof(Material), materials, objects_counts, objects); if(result == VK_ERROR_OUT_OF_DATE_KHR || result == VK_SUBOPTIMAL_KHR) { vkDeviceWaitIdle(context->device); recreate_swapchain(context); } else if(result != VK_SUCCESS) { fprintf(stderr, "draw_frame error %d\n", result); return; } context->current_frame += 1; if(context->current_frame >= context->max_frames_in_flight) { context->current_frame = 0; } } vkDeviceWaitIdle(context->device); } void cleanup(GLFWwindow* window, VulkanContext* context) { if(context != 0) { if(context->instance != VK_NULL_HANDLE) { if(context->swapchain != VK_NULL_HANDLE) { vkDestroySwapchainKHR(context->device, context->swapchain, 0); } if(context->surface != VK_NULL_HANDLE) { vkDestroySurfaceKHR(context->instance, context->surface, 0); } if(context->device != VK_NULL_HANDLE) { vkDestroyDevice(context->device, 0); } if(context->debug_messenger != VK_NULL_HANDLE) { PFN_vkDestroyDebugUtilsMessengerEXT destroy_messenger = (PFN_vkDestroyDebugUtilsMessengerEXT)vkGetInstanceProcAddr(context->instance, "vkDestroyDebugUtilsMessengerEXT"); destroy_messenger(context->instance, context->debug_messenger, 0); } vkDestroyInstance(context->instance, 0); } free(context); } if(window != 0) { glfwDestroyWindow(window); glfwTerminate(); } } int main() { PlyMesh monkey = ply_load_mesh("monkey.ply", default_ply_mappings); if(monkey.position == 0) { fprintf(stderr, "failed to load %s\n", "monkey.ply"); } GLFWwindow* window = init_window(800, 600); if(window == 0) { fprintf(stderr, "failed to initialize glfw window\n"); return 1; } VulkanContext* context = init_vulkan(window, 2); if (context == 0) { fprintf(stderr, "failed to initialize vulkan context\n"); return 2; } GPUPage* page = NULL; VkResult result = gpu_page_allocate(context->device, context->memories, 500, 0xFFFFFFFF, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT, &page); if(result != VK_SUCCESS) { return -1; } GPUBuffer buffers[10] = {0}; for(int i = 0; i < 10; i++) { result = gpu_buffer_malloc(context->device, page, 100, VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, &buffers[i]); if(result != VK_SUCCESS) { fprintf(stderr, "gpu_malloc error: %s\n", string_VkResult(result)); } else { fprintf(stderr, "gpu_malloc: %p@%llu\n", buffers[i].handle, buffers[i].memory->offset); fprintchunks(stderr, page->allocated); fprintchunks(stderr, page->free); } } int test[] = {3, 0, 2, 4, 1}; for(size_t i = 0; i < (sizeof(test)/sizeof(int)); i++) { int idx = test[i]; fprintf(stderr, "freeing %llu@%llu\n", buffers[idx].memory->size, buffers[idx].memory->offset); gpu_buffer_free(context->device, buffers[idx]); fprintchunks(stderr, page->free); } for(int i = 0; i < 10; i++) { result = gpu_buffer_malloc(context->device, page, 100, VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, &buffers[i]); if(result != VK_SUCCESS) { fprintf(stderr, "gpu_malloc error: %s\n", string_VkResult(result)); } else { fprintf(stderr, "gpu_malloc: %p@%llu\n", buffers[i].handle, buffers[i].memory->offset); fprintchunks(stderr, page->allocated); fprintchunks(stderr, page->free); } } gpu_page_free(context->device, page); glfwSetKeyCallback(window, key_callback); main_loop(window, context); cleanup(window, context); return 0; }