dfhack/plugins/autofarm.cpp

537 lines
20 KiB
C++

#include "Core.h"
#include "Console.h"
#include "Debug.h"
#include "Export.h"
#include "PluginManager.h"
#include "DataDefs.h"
#include "df/world.h"
#include "df/plotinfost.h"
#include "df/building_type.h"
#include "df/building_farmplotst.h"
#include "df/buildings_other_id.h"
#include "df/global_objects.h"
#include "df/item.h"
#include "df/item_plantst.h"
#include "df/item_plant_growthst.h"
#include "df/item_seedsst.h"
#include "df/items_other_id.h"
#include "df/unit.h"
#include "df/building.h"
#include "df/plant_raw.h"
#include "df/plant_raw_flags.h"
#include "df/biome_type.h"
#include "modules/Items.h"
#include "modules/Maps.h"
#include "modules/World.h"
#include <queue>
using namespace DFHack;
using namespace df::enums;
using df::global::world;
using df::global::plotinfo;
static command_result autofarm(color_ostream& out, std::vector<std::string>& parameters);
DFHACK_PLUGIN("autofarm");
DFHACK_PLUGIN_IS_ENABLED(enabled);
#define CONFIG_KEY "autofarm/config"
namespace DFHack {
DBG_DECLARE(autofarm, cycle, DebugCategory::LINFO);
DBG_DECLARE(autofarm, config, DebugCategory::LINFO);
}
class AutoFarm {
private:
std::map<int, int> thresholds;
int defaultThreshold = 50;
std::map<int, int> lastCounts;
public:
void initialize()
{
thresholds.clear();
defaultThreshold = 50;
lastCounts.clear();
}
void setThreshold(int id, int val)
{
thresholds[id] = val;
}
int getThreshold(int id)
{
return (thresholds.count(id) > 0) ? thresholds[id] : defaultThreshold;
}
void setDefault(int val)
{
defaultThreshold = val;
}
private:
const df::plant_raw_flags seasons[4] = { df::plant_raw_flags::SPRING, df::plant_raw_flags::SUMMER, df::plant_raw_flags::AUTUMN, df::plant_raw_flags::WINTER };
public:
bool is_plantable(df::plant_raw* plant)
{
bool has_seed = plant->flags.is_set(df::plant_raw_flags::SEED);
bool is_tree = plant->flags.is_set(df::plant_raw_flags::TREE);
int8_t season = *df::global::cur_season;
int harvest = (*df::global::cur_season_tick) + plant->growdur * 10;
bool can_plant = has_seed && !is_tree && plant->flags.is_set(seasons[season]);
while (can_plant && harvest >= 10080) {
season = (season + 1) % 4;
harvest -= 10080;
can_plant = can_plant && plant->flags.is_set(seasons[season]);
}
return can_plant;
}
private:
std::map<int, std::set<df::biome_type>> plantable_plants;
const std::map<df::plant_raw_flags, df::biome_type> biomeFlagMap = {
{ df::plant_raw_flags::BIOME_MOUNTAIN, df::biome_type::MOUNTAIN },
{ df::plant_raw_flags::BIOME_GLACIER, df::biome_type::GLACIER },
{ df::plant_raw_flags::BIOME_TUNDRA, df::biome_type::TUNDRA },
{ df::plant_raw_flags::BIOME_SWAMP_TEMPERATE_FRESHWATER, df::biome_type::SWAMP_TEMPERATE_FRESHWATER },
{ df::plant_raw_flags::BIOME_SWAMP_TEMPERATE_SALTWATER, df::biome_type::SWAMP_TEMPERATE_SALTWATER },
{ df::plant_raw_flags::BIOME_MARSH_TEMPERATE_FRESHWATER, df::biome_type::MARSH_TEMPERATE_FRESHWATER },
{ df::plant_raw_flags::BIOME_MARSH_TEMPERATE_SALTWATER, df::biome_type::MARSH_TEMPERATE_SALTWATER },
{ df::plant_raw_flags::BIOME_SWAMP_TROPICAL_FRESHWATER, df::biome_type::SWAMP_TROPICAL_FRESHWATER },
{ df::plant_raw_flags::BIOME_SWAMP_TROPICAL_SALTWATER, df::biome_type::SWAMP_TROPICAL_SALTWATER },
{ df::plant_raw_flags::BIOME_SWAMP_MANGROVE, df::biome_type::SWAMP_MANGROVE },
{ df::plant_raw_flags::BIOME_MARSH_TROPICAL_FRESHWATER, df::biome_type::MARSH_TROPICAL_FRESHWATER },
{ df::plant_raw_flags::BIOME_MARSH_TROPICAL_SALTWATER, df::biome_type::MARSH_TROPICAL_SALTWATER },
{ df::plant_raw_flags::BIOME_FOREST_TAIGA, df::biome_type::FOREST_TAIGA },
{ df::plant_raw_flags::BIOME_FOREST_TEMPERATE_CONIFER, df::biome_type::FOREST_TEMPERATE_CONIFER },
{ df::plant_raw_flags::BIOME_FOREST_TEMPERATE_BROADLEAF, df::biome_type::FOREST_TEMPERATE_BROADLEAF },
{ df::plant_raw_flags::BIOME_FOREST_TROPICAL_CONIFER, df::biome_type::FOREST_TROPICAL_CONIFER },
{ df::plant_raw_flags::BIOME_FOREST_TROPICAL_DRY_BROADLEAF, df::biome_type::FOREST_TROPICAL_DRY_BROADLEAF },
{ df::plant_raw_flags::BIOME_FOREST_TROPICAL_MOIST_BROADLEAF, df::biome_type::FOREST_TROPICAL_MOIST_BROADLEAF },
{ df::plant_raw_flags::BIOME_GRASSLAND_TEMPERATE, df::biome_type::GRASSLAND_TEMPERATE },
{ df::plant_raw_flags::BIOME_SAVANNA_TEMPERATE, df::biome_type::SAVANNA_TEMPERATE },
{ df::plant_raw_flags::BIOME_SHRUBLAND_TEMPERATE, df::biome_type::SHRUBLAND_TEMPERATE },
{ df::plant_raw_flags::BIOME_GRASSLAND_TROPICAL, df::biome_type::GRASSLAND_TROPICAL },
{ df::plant_raw_flags::BIOME_SAVANNA_TROPICAL, df::biome_type::SAVANNA_TROPICAL },
{ df::plant_raw_flags::BIOME_SHRUBLAND_TROPICAL, df::biome_type::SHRUBLAND_TROPICAL },
{ df::plant_raw_flags::BIOME_DESERT_BADLAND, df::biome_type::DESERT_BADLAND },
{ df::plant_raw_flags::BIOME_DESERT_ROCK, df::biome_type::DESERT_ROCK },
{ df::plant_raw_flags::BIOME_DESERT_SAND, df::biome_type::DESERT_SAND },
{ df::plant_raw_flags::BIOME_OCEAN_TROPICAL, df::biome_type::OCEAN_TROPICAL },
{ df::plant_raw_flags::BIOME_OCEAN_TEMPERATE, df::biome_type::OCEAN_TEMPERATE },
{ df::plant_raw_flags::BIOME_OCEAN_ARCTIC, df::biome_type::OCEAN_ARCTIC },
{ df::plant_raw_flags::BIOME_POOL_TEMPERATE_FRESHWATER, df::biome_type::POOL_TEMPERATE_FRESHWATER },
{ df::plant_raw_flags::BIOME_POOL_TEMPERATE_BRACKISHWATER, df::biome_type::POOL_TEMPERATE_BRACKISHWATER },
{ df::plant_raw_flags::BIOME_POOL_TEMPERATE_SALTWATER, df::biome_type::POOL_TEMPERATE_SALTWATER },
{ df::plant_raw_flags::BIOME_POOL_TROPICAL_FRESHWATER, df::biome_type::POOL_TROPICAL_FRESHWATER },
{ df::plant_raw_flags::BIOME_POOL_TROPICAL_BRACKISHWATER, df::biome_type::POOL_TROPICAL_BRACKISHWATER },
{ df::plant_raw_flags::BIOME_POOL_TROPICAL_SALTWATER, df::biome_type::POOL_TROPICAL_SALTWATER },
{ df::plant_raw_flags::BIOME_LAKE_TEMPERATE_FRESHWATER, df::biome_type::LAKE_TEMPERATE_FRESHWATER },
{ df::plant_raw_flags::BIOME_LAKE_TEMPERATE_BRACKISHWATER, df::biome_type::LAKE_TEMPERATE_BRACKISHWATER },
{ df::plant_raw_flags::BIOME_LAKE_TEMPERATE_SALTWATER, df::biome_type::LAKE_TEMPERATE_SALTWATER },
{ df::plant_raw_flags::BIOME_LAKE_TROPICAL_FRESHWATER, df::biome_type::LAKE_TROPICAL_FRESHWATER },
{ df::plant_raw_flags::BIOME_LAKE_TROPICAL_BRACKISHWATER, df::biome_type::LAKE_TROPICAL_BRACKISHWATER },
{ df::plant_raw_flags::BIOME_LAKE_TROPICAL_SALTWATER, df::biome_type::LAKE_TROPICAL_SALTWATER },
{ df::plant_raw_flags::BIOME_RIVER_TEMPERATE_FRESHWATER, df::biome_type::RIVER_TEMPERATE_FRESHWATER },
{ df::plant_raw_flags::BIOME_RIVER_TEMPERATE_BRACKISHWATER, df::biome_type::RIVER_TEMPERATE_BRACKISHWATER },
{ df::plant_raw_flags::BIOME_RIVER_TEMPERATE_SALTWATER, df::biome_type::RIVER_TEMPERATE_SALTWATER },
{ df::plant_raw_flags::BIOME_RIVER_TROPICAL_FRESHWATER, df::biome_type::RIVER_TROPICAL_FRESHWATER },
{ df::plant_raw_flags::BIOME_RIVER_TROPICAL_BRACKISHWATER, df::biome_type::RIVER_TROPICAL_BRACKISHWATER },
{ df::plant_raw_flags::BIOME_RIVER_TROPICAL_SALTWATER, df::biome_type::RIVER_TROPICAL_SALTWATER },
{ df::plant_raw_flags::BIOME_SUBTERRANEAN_WATER, df::biome_type::SUBTERRANEAN_WATER },
{ df::plant_raw_flags::BIOME_SUBTERRANEAN_CHASM, df::biome_type::SUBTERRANEAN_CHASM },
{ df::plant_raw_flags::BIOME_SUBTERRANEAN_LAVA, df::biome_type::SUBTERRANEAN_LAVA }
};
public:
void find_plantable_plants()
{
plantable_plants.clear();
std::map<int, int> counts;
const uint32_t bad_flags{
#define F(x) (df::item_flags::Mask::mask_##x)
F(dump) | F(forbid) | F(garbage_collect) |
F(hostile) | F(on_fire) | F(rotten) | F(trader) |
F(in_building) | F(construction) | F(artifact)
#undef F
};
for (auto& ii : world->items.other[df::items_other_id::SEEDS])
{
auto i = virtual_cast<df::item_seedsst>(ii);
if (i && (i->flags.whole & bad_flags) == 0)
counts[i->mat_index] += i->stack_size;
}
for (auto& ci : counts)
{
df::plant_raw* plant = world->raws.plants.all[ci.first];
if (is_plantable(plant))
for (auto& flagmap : biomeFlagMap)
if (plant->flags.is_set(flagmap.first))
plantable_plants[plant->index].insert(flagmap.second);
}
}
std::string get_plant_name(int plant_id)
{
df::plant_raw* raw = df::plant_raw::find(plant_id);
return raw ? raw->name : "NONE";
}
void set_farm(color_ostream& out, int new_plant_id, df::building_farmplotst* farm, int season)
{
int old_plant_id = farm->plant_id[season];
if (old_plant_id != new_plant_id)
{
farm->plant_id[season] = new_plant_id;
INFO(cycle, out).print("autofarm: changing farm #%d from %s to %s\n", farm->id, get_plant_name(old_plant_id), get_plant_name(new_plant_id));
}
}
void set_farms(color_ostream& out, const std::set<int>& plants, const std::vector<df::building_farmplotst*>& farms)
{
// this algorithm attempts to change as few farms as possible, while ensuring that
// the number of farms planting each eligible plant is "as equal as possible"
int season = *df::global::cur_season;
if (farms.empty() || plants.empty())
{
// if no more plants were requested, fallow all farms
// if there were no farms, do nothing
for (auto farm : farms)
{
set_farm(out, -1, farm, season);
}
return;
}
int min = farms.size() / plants.size(); // the number of farms that should plant each eligible plant, rounded down
int extra = farms.size() - min * plants.size(); // the remainder that cannot be evenly divided
std::map<int, int> counters;
std::queue<df::building_farmplotst*> toChange;
for (auto farm : farms)
{
int o = farm->plant_id[season];
if (plants.count(o) == 0 || counters[o] > min || (counters[o] == min && extra == 0))
toChange.push(farm); // this farm is an excess instance for the plant it is currently planting
else
{
if (counters[o] == min)
extra--; // allocate off one of the remainder farms
counters[o]++;
}
}
for (auto n : plants)
{
int c = counters[n];
while (toChange.size() > 0 && (c < min || (c == min && extra > 0)))
{
// pick one of the excess farms and change it to plant this plant
df::building_farmplotst* farm = toChange.front();
set_farm(out, n, farm, season);
toChange.pop();
if (c++ == min)
extra--;
}
}
}
void process(color_ostream& out)
{
if (!enabled)
return;
find_plantable_plants();
lastCounts.clear();
const uint32_t bad_flags{
#define F(x) (df::item_flags::Mask::mask_##x)
F(dump) | F(forbid) | F(garbage_collect) |
F(hostile) | F(on_fire) | F(rotten) | F(trader) |
F(in_building) | F(construction) | F(artifact)
#undef F
};
// have to scan both items[PLANT] and items[PLANT_GROWTH] because agricultural products can be either
auto count = [&, this](df::item* i) {
auto mat = i->getMaterialIndex();
if ((i->flags.whole & bad_flags) == 0 &&
plantable_plants.count(mat) > 0)
{
lastCounts[mat] += i->getStackSize();
}
};
for (auto i : world->items.other[df::items_other_id::PLANT])
count(i);
for (auto i : world->items.other[df::items_other_id::PLANT_GROWTH])
count(i);
std::map<df::biome_type, std::set<int>> plants;
for (auto& plantable : plantable_plants)
{
df::plant_raw* plant = world->raws.plants.all[plantable.first];
if (lastCounts[plant->index] < getThreshold(plant->index))
for (auto biome : plantable.second)
{
plants[biome].insert(plant->index);
}
}
std::map<df::biome_type, std::vector<df::building_farmplotst*>> farms;
for (auto& bb : world->buildings.other[df::buildings_other_id::FARM_PLOT])
{
auto farm = virtual_cast<df::building_farmplotst>(bb);
if (farm->flags.bits.exists)
{
df::biome_type biome;
if (Maps::getTileDesignation(bb->centerx, bb->centery, bb->z)->bits.subterranean)
biome = biome_type::SUBTERRANEAN_WATER;
else {
df::coord2d region(Maps::getTileBiomeRgn(df::coord(bb->centerx, bb->centery, bb->z)));
biome = Maps::GetBiomeType(region.x, region.y);
}
farms[biome].push_back(farm);
}
}
for (auto& ff : farms)
{
set_farms(out, plants[ff.first], ff.second);
}
out << std::flush;
}
void status(color_ostream& out)
{
out << "Autofarm is " << (enabled ? "Active." : "Stopped.") << '\n';
for (auto& lc : lastCounts)
{
auto plant = world->raws.plants.all[lc.first];
out << plant->id << " limit " << getThreshold(lc.first) << " current " << lc.second << '\n';
}
for (auto& th : thresholds)
{
if (lastCounts[th.first] > 0)
continue;
auto plant = world->raws.plants.all[th.first];
out << plant->id << " limit " << getThreshold(th.first) << " current 0" << '\n';
}
out << "Default: " << defaultThreshold << '\n';
out << std::flush;
}
void load_state(color_ostream& out)
{
initialize();
PersistentDataItem cfg_default_threshold = World::GetPersistentData("autofarm/default_threshold");
if (cfg_default_threshold.isValid())
defaultThreshold = cfg_default_threshold.ival(0);
PersistentDataItem cfg_num_thresholds = World::GetPersistentData("autofarm/num_threshold");
if (cfg_num_thresholds.isValid())
{
int n = cfg_num_thresholds.ival(0);
for (int i = 0; i < n; i++)
{
const std::string keyName = "autofarm/threshold/" + std::to_string(i);
PersistentDataItem cfg_threshold = World::GetPersistentData(keyName);
if (cfg_threshold.isValid())
{
const auto allPlants = world->raws.plants.all;
const std::string id = cfg_threshold.val();
const int val = cfg_threshold.ival(0);
const auto plant = std::find_if(std::begin(allPlants), std::end(allPlants), [id](df::plant_raw* p) { return p->id == id; });
if (plant != std::end(allPlants))
{
setThreshold((*plant)->index, val);
INFO(config, out).print("threshold of %d for unknown plant %s in saved configuration loaded\n", val, id);
}
else
{
WARN(config, out).print("threshold for unknown plant %s in saved configuration ignored\n", id);
}
}
}
}
PersistentDataItem cfg_enabled = World::GetPersistentData("autofarm/enabled");
enabled = (cfg_enabled.isValid() && cfg_enabled.ival(0) != 0);
}
void save_state(color_ostream& out)
{
World::AddPersistentData("autofarm/default_threshold").ival(0) = defaultThreshold;
World::AddPersistentData("autofarm/num_threshold").ival(0) = thresholds.size();
for (const auto& t : thresholds)
{
const std::string& plantName = world->raws.plants.all[t.first]->id;
const std::string keyName = "autofarm/threshold/" + plantName;
PersistentDataItem cfgThreshold = World::AddPersistentData(keyName);
cfgThreshold.val() = plantName;
cfgThreshold.ival(0) = t.second;
}
World::AddPersistentData("autofarm/enabled").ival(0) = enabled;
}
};
static std::unique_ptr<AutoFarm> autofarmInstance;
DFhackCExport command_result plugin_init(color_ostream& out, std::vector <PluginCommand>& commands)
{
if (world && plotinfo) {
commands.push_back(
PluginCommand("autofarm",
"Automatically manage farm crop selection.",
autofarm));
}
autofarmInstance = std::move(dts::make_unique<AutoFarm>());
return CR_OK;
}
DFhackCExport command_result plugin_shutdown(color_ostream& out)
{
autofarmInstance.release();
return CR_OK;
}
DFhackCExport command_result plugin_onupdate(color_ostream& out)
{
if (!autofarmInstance)
return CR_OK;
if (!Maps::IsValid())
return CR_OK;
if (DFHack::World::ReadPauseState())
return CR_OK;
if (world->frame_counter % 50 != 0) // Check every hour
return CR_OK;
{
CoreSuspender suspend;
autofarmInstance->process(out);
}
return CR_OK;
}
DFhackCExport command_result plugin_enable(color_ostream& out, bool enable)
{
enabled = enable;
if (Core::getInstance().isWorldLoaded())
autofarmInstance->save_state(out);
return CR_OK;
}
DFhackCExport command_result plugin_onstatechange(color_ostream& out, state_change_event event)
{
if (!autofarmInstance)
return CR_OK;
switch (event) {
case SC_WORLD_LOADED:
autofarmInstance->load_state(out);
break;
case SC_MAP_UNLOADED:
break;
default:
break;
}
return CR_OK;
}
static command_result setThresholds(color_ostream& out, std::vector<std::string>& parameters)
{
int val = atoi(parameters[1].c_str());
for (size_t i = 2; i < parameters.size(); i++)
{
std::string id = parameters[i];
std::transform(id.begin(), id.end(), id.begin(), ::toupper);
bool ok = false;
for (auto plant : world->raws.plants.all)
{
if (plant->flags.is_set(df::plant_raw_flags::SEED) && (plant->id == id))
{
autofarmInstance->setThreshold(plant->index, val);
ok = true;
break;
}
}
if (!ok)
{
out << "Cannot find plant with id " << id << '\n' << std::flush;
return CR_WRONG_USAGE;
}
}
autofarmInstance->save_state(out);
return CR_OK;
}
static command_result autofarm(color_ostream& out, std::vector<std::string>& parameters)
{
CoreSuspender suspend;
if (parameters.size() == 1 && parameters[0] == "runonce")
{
if (autofarmInstance) autofarmInstance->process(out);
}
else if (parameters.size() == 1 && parameters[0] == "enable")
plugin_enable(out, true);
else if (parameters.size() == 1 && parameters[0] == "disable")
plugin_enable(out, false);
else if (parameters.size() == 2 && parameters[0] == "default")
{
if (autofarmInstance)
{
autofarmInstance->setDefault(atoi(parameters[1].c_str()));
autofarmInstance->save_state(out);
}
}
else if (parameters.size() >= 3 && parameters[0] == "threshold")
{
if (autofarmInstance)
return setThresholds(out, parameters);
}
else if (parameters.size() == 0 || (parameters.size() == 1 && parameters[0] == "status"))
autofarmInstance->status(out);
else
return CR_WRONG_USAGE;
return CR_OK;
}