dfhack/plugins/prospector.cpp

941 lines
32 KiB
C++

// Produces a list of materials available on the map.
// Options:
// -a : show unrevealed tiles
// -p : don't show plants
// -s : don't show slade
// -t : don't show demon temple
//#include <cstdlib>
#include <iostream>
#include <iomanip>
#include <map>
#include <algorithm>
#include <functional>
#include <vector>
using namespace std;
#include "Core.h"
#include "Console.h"
#include "Export.h"
#include "LuaTools.h"
#include "PluginManager.h"
#include "modules/Gui.h"
#include "modules/MapCache.h"
#include "MiscUtils.h"
#include "DataDefs.h"
#include "df/world.h"
#include "df/world_data.h"
#include "df/world_region_details.h"
#include "df/world_region_feature.h"
#include "df/world_geo_biome.h"
#include "df/world_geo_layer.h"
#include "df/world_underground_region.h"
#include "df/feature_init.h"
#include "df/region_map_entry.h"
#include "df/inclusion_type.h"
#include "df/viewscreen_choose_start_sitest.h"
#include "df/plant.h"
using namespace DFHack;
using namespace df::enums;
using df::coord2d;
DFHACK_PLUGIN("prospector");
REQUIRE_GLOBAL(world);
struct prospect_options {
// whether to display help
bool help = false;
// whether to scan the whole map or just the unhidden tiles
bool hidden = false;
// whether to also show material values
bool value = false;
// whether to show adamantine tube z-levels
bool tube = false;
// which report sections to show
bool summary = true;
bool liquids = true;
bool layers = true;
bool features = true;
bool ores = true;
bool gems = true;
bool veins = true;
bool shrubs = true;
bool trees = true;
static struct_identity _identity;
};
static const struct_field_info prospect_options_fields[] = {
{ struct_field_info::PRIMITIVE, "help", offsetof(prospect_options, help), &df::identity_traits<bool>::identity, 0, 0 },
{ struct_field_info::PRIMITIVE, "hidden", offsetof(prospect_options, hidden), &df::identity_traits<bool>::identity, 0, 0 },
{ struct_field_info::PRIMITIVE, "value", offsetof(prospect_options, value), &df::identity_traits<bool>::identity, 0, 0 },
{ struct_field_info::PRIMITIVE, "tube", offsetof(prospect_options, tube), &df::identity_traits<bool>::identity, 0, 0 },
{ struct_field_info::PRIMITIVE, "summary", offsetof(prospect_options, summary), &df::identity_traits<bool>::identity, 0, 0 },
{ struct_field_info::PRIMITIVE, "liquids", offsetof(prospect_options, liquids), &df::identity_traits<bool>::identity, 0, 0 },
{ struct_field_info::PRIMITIVE, "layers", offsetof(prospect_options, layers), &df::identity_traits<bool>::identity, 0, 0 },
{ struct_field_info::PRIMITIVE, "features", offsetof(prospect_options, features), &df::identity_traits<bool>::identity, 0, 0 },
{ struct_field_info::PRIMITIVE, "ores", offsetof(prospect_options, ores), &df::identity_traits<bool>::identity, 0, 0 },
{ struct_field_info::PRIMITIVE, "gems", offsetof(prospect_options, gems), &df::identity_traits<bool>::identity, 0, 0 },
{ struct_field_info::PRIMITIVE, "veins", offsetof(prospect_options, veins), &df::identity_traits<bool>::identity, 0, 0 },
{ struct_field_info::PRIMITIVE, "shrubs", offsetof(prospect_options, shrubs), &df::identity_traits<bool>::identity, 0, 0 },
{ struct_field_info::PRIMITIVE, "trees", offsetof(prospect_options, trees), &df::identity_traits<bool>::identity, 0, 0 },
{ struct_field_info::END }
};
struct_identity prospect_options::_identity(sizeof(prospect_options), &df::allocator_fn<prospect_options>, NULL, "prospect_options", NULL, prospect_options_fields);
struct matdata
{
const static int invalid_z = -30000;
matdata()
{
count = 0.0;
lower_z = invalid_z;
upper_z = invalid_z;
}
matdata (const matdata & copyme)
{
count = copyme.count;
lower_z = copyme.lower_z;
upper_z = copyme.upper_z;
}
float add(int z_level = invalid_z, float delta = 1.0)
{
count += delta;
if(z_level != invalid_z)
{
if(lower_z == invalid_z || z_level < lower_z)
{
lower_z = z_level;
}
if(upper_z == invalid_z || z_level > upper_z)
{
upper_z = z_level;
}
}
return count;
}
float count;
int lower_z;
int upper_z;
};
bool operator>(const matdata & q1, const matdata & q2)
{
return q1.count > q2.count;
}
template<typename Tp = matdata >
struct shallower
{
bool operator()(const Tp& top, const Tp& bottom) const
{
float topavg = (top.lower_z + top.upper_z)/2.0f;
float btmavg = (bottom.lower_z + bottom.upper_z)/2.0f;
return topavg > btmavg;
}
};
typedef std::map<int16_t, matdata> MatMap;
typedef std::vector< pair<int16_t, matdata> > MatSorter;
typedef std::vector<df::plant *> PlantList;
#define TO_PTR_VEC(obj_vec, ptr_vec) \
ptr_vec.clear(); \
for (size_t i = 0; i < obj_vec.size(); i++) \
ptr_vec.push_back(&obj_vec[i])
template<template <typename> class P = std::greater >
struct compare_pair_second
{
template<class T1, class T2>
bool operator()(const std::pair<T1, T2>& left, const std::pair<T1, T2>& right)
{
return P<T2>()(left.second, right.second);
}
};
static void printMatdata(color_ostream &con, const matdata &data, bool only_z = false)
{
if (!only_z)
con << std::setw(9) << int(data.count);
if(data.lower_z != data.upper_z)
con <<" Z:" << std::setw(4) << data.lower_z << ".." << data.upper_z << std::endl;
else
con <<" Z:" << std::setw(4) << data.lower_z << std::endl;
}
static int getValue(const df::inorganic_raw &info)
{
return info.material.material_value;
}
static int getValue(const df::plant_raw &info)
{
return info.value;
}
template <typename T, template <typename> class P>
void printMats(color_ostream &con, MatMap &mat, std::vector<T*> &materials, const prospect_options &options)
{
unsigned int total = 0;
MatSorter sorting_vector;
for (MatMap::const_iterator it = mat.begin(); it != mat.end(); ++it)
{
sorting_vector.push_back(*it);
}
std::sort(sorting_vector.begin(), sorting_vector.end(),
compare_pair_second<P>());
for (MatSorter::const_iterator it = sorting_vector.begin();
it != sorting_vector.end(); ++it)
{
if(size_t(it->first) >= materials.size())
{
con << "Bad index: " << it->first << " out of "
<< materials.size() << endl;
continue;
}
T* mat = materials[it->first];
// Somewhat of a hack, but it works because df::inorganic_raw and df::plant_raw both have a field named "id"
con << std::setw(25) << mat->id << " : ";
if (options.value)
con << std::setw(3) << getValue(*mat) << " : ";
printMatdata(con, it->second);
total += it->second.count;
}
con << ">>> TOTAL = " << total << std::endl << std::endl;
}
void printVeins(color_ostream &con, MatMap &mat_map,
const prospect_options &options)
{
MatMap ores;
MatMap gems;
MatMap rest;
for (const auto &kv : mat_map)
{
df::inorganic_raw *gloss = vector_get(world->raws.inorganics, kv.first);
if (!gloss)
{
con.printerr("invalid material gloss: %hi\n", kv.first);
continue;
}
if (gloss->material.isGem())
gems[kv.first] = kv.second;
else if (gloss->isOre())
ores[kv.first] = kv.second;
else
rest[kv.first] = kv.second;
}
if (options.ores) {
con << "Ores:" << std::endl;
printMats<df::inorganic_raw, std::greater>(con, ores, world->raws.inorganics, options);
}
if (options.gems) {
con << "Gems:" << std::endl;
printMats<df::inorganic_raw, std::greater>(con, gems, world->raws.inorganics, options);
}
if (options.veins) {
con << "Other vein stone:" << std::endl;
printMats<df::inorganic_raw, std::greater>(con, rest, world->raws.inorganics, options);
}
}
command_result prospector (color_ostream &out, vector <string> & parameters);
DFhackCExport command_result plugin_init ( color_ostream &out, std::vector <PluginCommand> &commands)
{
commands.push_back(PluginCommand(
"prospect",
"Show raw resources available on the map.",
prospector));
return CR_OK;
}
DFhackCExport command_result plugin_shutdown ( color_ostream &out )
{
return CR_OK;
}
static coord2d biome_delta[] = {
coord2d(-1,1), coord2d(0,1), coord2d(1,1),
coord2d(-1,0), coord2d(0,0), coord2d(1,0),
coord2d(-1,-1), coord2d(0,-1), coord2d(1,-1)
};
struct EmbarkTileLayout {
coord2d biome_off, biome_pos;
df::region_map_entry *biome;
df::world_geo_biome *geo_biome;
int elevation, max_soil_depth;
int min_z, base_z;
std::map<int, float> penalty;
};
static df::world_region_details *get_details(df::world_data *data, df::coord2d pos)
{
int d_idx = linear_index(data->region_details, &df::world_region_details::pos, pos);
return vector_get(data->region_details, d_idx);
}
bool estimate_underground(color_ostream &out, EmbarkTileLayout &tile, df::world_region_details *details, int x, int y)
{
if (x < 0 || y < 0 || x > 15 || y > 15) {
out.printerr("Invalid embark coordinates: x=%i, y=%i\n", x, y);
return false;
}
// Find actual biome
int bv = clip_range(details->biome[x][y] & 15, 1, 9);
tile.biome_off = biome_delta[bv-1];
df::world_data *data = world->world_data;
int bx = clip_range(details->pos.x + tile.biome_off.x, 0, data->world_width-1);
int by = clip_range(details->pos.y + tile.biome_off.y, 0, data->world_height-1);
tile.biome_pos = coord2d(bx, by);
tile.biome = &data->region_map[bx][by];
tile.geo_biome = df::world_geo_biome::find(tile.biome->geo_index);
// Compute surface elevation
tile.elevation = details->elevation[x][y];
tile.max_soil_depth = std::max((154-tile.elevation)/5,1);
tile.penalty.clear();
// Special biome adjustments
if (!tile.biome->flags.is_set(region_map_entry_flags::is_lake))
{
// Mountain biome
if (tile.biome->elevation >= 150)
tile.max_soil_depth = 0;
// Ocean biome
else if (tile.biome->elevation < 100)
{
if (tile.elevation == 99)
tile.elevation = 98;
if (tile.geo_biome && (tile.geo_biome->unk1 == 4 || tile.geo_biome->unk1 == 5))
{
auto b_details = get_details(data, tile.biome_pos);
if (b_details && b_details->unk12e8 < 500)
tile.max_soil_depth = 0;
}
}
}
tile.base_z = tile.elevation-1;
auto &features = details->features[x][y];
// Collect global feature layer depths and apply penalties
std::map<int, int> layer_bottom, layer_top;
bool sea_found = false;
for (size_t i = 0; i < features.size(); i++)
{
auto feature = features[i];
auto layer = df::world_underground_region::find(feature->layer);
if (!layer || feature->min_z == -30000) continue;
layer_bottom[layer->layer_depth] = feature->min_z;
layer_top[layer->layer_depth] = feature->max_z;
tile.base_z = std::min(tile.base_z, (int)feature->min_z);
float penalty = 1.0f;
switch (layer->type) {
case df::world_underground_region::Cavern:
penalty = 0.75f;
break;
case df::world_underground_region::MagmaSea:
sea_found = true;
tile.min_z = feature->min_z;
for (int i = feature->min_z; i <= feature->max_z; i++)
tile.penalty[i] = 0.2 + 0.6f*(i-feature->min_z)/(feature->max_z-feature->min_z+1);
break;
case df::world_underground_region::Underworld:
penalty = 0.0f;
break;
}
if (penalty != 1.0f)
{
for (int i = feature->min_z; i <= feature->max_z; i++)
tile.penalty[i] = penalty;
}
}
if (!sea_found)
{
out.printerr("Could not find magma sea; depth may be incorrect.\n");
tile.min_z = tile.base_z;
}
// Scan for big local features and apply their penalties
for (size_t i = 0; i < features.size(); i++)
{
auto feature = features[i];
auto lfeature = Maps::getLocalInitFeature(details->pos, feature->feature_idx);
if (!lfeature)
continue;
switch (lfeature->getType())
{
case feature_type::pit:
case feature_type::magma_pool:
case feature_type::volcano:
for (int i = layer_bottom[lfeature->end_depth];
i <= layer_top[lfeature->start_depth]; i++)
tile.penalty[i] = std::min(0.4f, map_find(tile.penalty, i, 1.0f));
break;
default:
break;
}
}
return true;
}
void add_materials(EmbarkTileLayout &tile, matdata &data, float amount, int min_z, int max_z)
{
for (int z = min_z; z <= max_z; z++)
data.add(z, map_find(tile.penalty, z, 1) * amount);
}
bool estimate_materials(color_ostream &out, EmbarkTileLayout &tile, MatMap &layerMats, MatMap &veinMats)
{
using namespace geo_layer_type;
df::world_geo_biome *geo_biome = tile.geo_biome;
if (!geo_biome)
{
out.printerr("Region geo-biome not found: (%d,%d)\n",
tile.biome_pos.x, tile.biome_pos.y);
return false;
}
// soil depth increases by 1 every 5 levels below 150
unsigned nlayers = std::min<unsigned>(16, geo_biome->layers.size());
int soil_size = 0;
for (unsigned i = 0; i < nlayers; i++)
{
auto layer = geo_biome->layers[i];
if (layer->type == SOIL || layer->type == SOIL_SAND)
soil_size += layer->top_height - layer->bottom_height + 1;
}
// Compute shifts for layers in the stack
int soil_erosion = soil_size - std::min(soil_size,tile.max_soil_depth);
int layer_shift[16];
int cur_shift = tile.elevation+soil_erosion-1;
for (unsigned i = 0; i < nlayers; i++)
{
auto layer = geo_biome->layers[i];
layer_shift[i] = cur_shift;
if (layer->type == SOIL || layer->type == SOIL_SAND)
{
int size = layer->top_height - layer->bottom_height + 1;
// This is to replicate the behavior of a probable bug in the
// map generation code: if a layer is partially eroded, the
// removed levels are in fact transferred to the layer below,
// because unlike the case of removing the whole layer, the code
// does not execute a loop to shift the lower part of the stack up.
if (size > soil_erosion)
cur_shift -= soil_erosion;
soil_erosion -= std::min(soil_erosion, size);
}
}
// Estimate amounts
int last_bottom = tile.elevation;
for (unsigned i = 0; i < nlayers; i++)
{
auto layer = geo_biome->layers[i];
int top_z = last_bottom-1;
int bottom_z = std::max(layer->bottom_height + layer_shift[i], tile.min_z);
if (i+1 == nlayers) // stretch layer if needed
bottom_z = tile.min_z;
if (top_z < bottom_z)
continue;
last_bottom = bottom_z;
float layer_size = 48*48;
int sums[ENUM_LAST_ITEM(inclusion_type)+1] = { 0 };
// Small clusters actually belong to different groups depending on whether they are enclosed by layers, clusters, or veins.
// Similarly, veins belong to different groups depending on whether they are enclosed by layers or clusters.
// However, these fine details probably drown in the uncertainty inherent in estimating amounts based on RNG distributed proportions.
for (unsigned j = 0; j < layer->vein_mat.size(); j++)
if (is_valid_enum_item<df::inclusion_type>(layer->vein_type[j]))
sums[layer->vein_type[j]] += layer->vein_unk_38[j];
for (unsigned j = 0; j < layer->vein_mat.size(); j++)
{
// TODO: find out how to estimate the real density
// this code assumes that vein_unk_38 is the weight
// used when choosing the vein material
float size = float(layer->vein_unk_38[j]);
df::inclusion_type type = layer->vein_type[j];
// There doesn't seem to be any relation between mineral scarcity and the number or size of clusters and veins,
// apart from when it leads to them being completely absent, e.g. either there are 10 small clusters or there are none.
switch (type)
{
case inclusion_type::VEIN:
if (layer->vein_nested_in[j] == -1) { // Veins directly in the layer, i.e. the normal case
// 2-4 veins with a guessed average of 100 tiles each
size = size * 300 / sums[type];
}
else { // Should only be veins in clusters
// 1 vein with a very shaky guessed average of 50 tiles
// TODO: Veins in clusters do not share the pool with normal veins but are added on top of it, but this will have to do for now
size = size * 50 / sums[type];
}
break;
case inclusion_type::CLUSTER:
// 1 cluster of 750 tiles avg. The average size can be refined.
size = size * 750 / sums[type];
break;
case inclusion_type::CLUSTER_SMALL:
if (layer->vein_nested_in[j] == -1 ||
layer->vein_type[layer->vein_nested_in[j]] != inclusion_type::VEIN) {
// Small clusters in the layer and in clusters share a common pool of 10 clusters
// An estimate is that the average sum of these is 52, but there is room for refinement
size = size * 52 / sums[type];
}
else {
// A very shaky guess of an average of 3 clusters with 15.6->16 tiles
// TODO: Small clusters in veins appear in addition to the regular set, but this will have to do for now
size = size * 16 / sums[type];
}
break;
case inclusion_type::CLUSTER_ONE:
if (layer->vein_nested_in[j] == -1 ||
layer->vein_type[layer->vein_nested_in[j]] != inclusion_type::CLUSTER_SMALL) {
// Doesn't happen with vanilla raws, so this is just a wild guess that it might happen 5 times
size = size * 5 / sums[type];
}
else {
// Vanilla only has single clusters nested in small ones. We weigh the estimate based on the proportion of
// the small clusters out of the 10 standard ones. Note that this does not distinguish between enclosing small
// clusters that are actually in standard pool of 10 and those in veins (TODO)
size = size * layer->vein_unk_38[layer->vein_nested_in[j]] * 10 / sums[inclusion_type::CLUSTER_SMALL] / sums[type];
}
break;
default:
// shouldn't actually happen
size = 1;
}
layer_size -= size;
add_materials(tile, veinMats[layer->vein_mat[j]], size, bottom_z, top_z);
}
add_materials(tile, layerMats[layer->mat_index], layer_size, bottom_z, top_z);
}
return true;
}
static command_result embark_prospector(color_ostream &out,
df::viewscreen_choose_start_sitest *screen,
const prospect_options &options)
{
if (!world || !world->world_data)
{
out.printerr("World data is not available.\n");
return CR_FAILURE;
}
df::world_data *data = world->world_data;
coord2d cur_region = screen->location.region_pos;
auto cur_details = get_details(data, cur_region);
if (!cur_details)
{
out.printerr("Current region details are not available.\n");
return CR_FAILURE;
}
// Compute material maps
MatMap layerMats;
MatMap veinMats;
matdata world_bottom;
// Compute biomes
std::map<coord2d, int> biomes;
for (int x = screen->location.embark_pos_min.x; x <= 15 && x <= screen->location.embark_pos_max.x; x++)
{
for (int y = screen->location.embark_pos_min.y; y <= 15 && y <= screen->location.embark_pos_max.y; y++)
{
EmbarkTileLayout tile;
if (!estimate_underground(out, tile, cur_details, x, y) ||
!estimate_materials(out, tile, layerMats, veinMats))
return CR_FAILURE;
world_bottom.add(tile.base_z, 0);
world_bottom.add(tile.elevation-1, 0);
}
}
// Print the report
if (options.layers) {
out << "Layer materials:" << std::endl;
printMats<df::inorganic_raw, shallower>(out, layerMats, world->raws.inorganics, options);
}
if (options.hidden) {
DFHack::Materials *mats = Core::getInstance().getMaterials();
printVeins(out, veinMats, options);
mats->Finish();
}
out << "Embark depth: " << (world_bottom.upper_z-world_bottom.lower_z+1) << " ";
printMatdata(out, world_bottom, true);
out << std::endl << "Warning: the above data is only a very rough estimate." << std::endl;
return CR_OK;
}
static command_result map_prospector(color_ostream &con,
const prospect_options &options) {
if (!Maps::IsValid())
{
con.printerr("Map is not available!\n");
return CR_FAILURE;
}
uint32_t x_max = 0, y_max = 0, z_max = 0;
Maps::getSize(x_max, y_max, z_max);
MapExtras::MapCache map;
DFHack::Materials *mats = Core::getInstance().getMaterials();
DFHack::t_feature blockFeatureGlobal;
DFHack::t_feature blockFeatureLocal;
bool hasDemonTemple = false;
bool hasLair = false;
MatMap baseMats;
MatMap layerMats;
MatMap veinMats;
MatMap plantMats;
MatMap treeMats;
matdata liquidWater;
matdata liquidMagma;
matdata aquiferTiles;
matdata tubeTiles;
for(uint32_t z = 0; z < z_max; z++)
{
for(uint32_t b_y = 0; b_y < y_max; b_y++)
{
for(uint32_t b_x = 0; b_x < x_max; b_x++)
{
// Get the map block
df::coord2d blockCoord(b_x, b_y);
MapExtras::Block *b = map.BlockAt(DFHack::DFCoord(b_x, b_y, z));
if (!b || !b->is_valid())
{
continue;
}
// Find features
b->GetGlobalFeature(&blockFeatureGlobal);
b->GetLocalFeature(&blockFeatureLocal);
int global_z = world->map.region_z + z;
// Iterate over all the tiles in the block
for(uint32_t y = 0; y < 16; y++)
{
for(uint32_t x = 0; x < 16; x++)
{
df::coord2d coord(x, y);
df::tile_designation des = b->DesignationAt(coord);
df::tile_occupancy occ = b->OccupancyAt(coord);
// Skip hidden tiles
if (!options.hidden && des.bits.hidden)
{
continue;
}
// Check for aquifer
if (des.bits.water_table)
{
aquiferTiles.add(global_z);
}
// Check for lairs
if (occ.bits.monster_lair)
{
hasLair = true;
}
// Check for liquid
if (des.bits.flow_size)
{
if (des.bits.liquid_type == tile_liquid::Magma)
liquidMagma.add(global_z);
else
liquidWater.add(global_z);
}
df::tiletype type = b->tiletypeAt(coord);
df::tiletype_shape tileshape = tileShape(type);
df::tiletype_material tilemat = tileMaterial(type);
// We only care about these types
switch (tileshape)
{
case tiletype_shape::WALL:
case tiletype_shape::FORTIFICATION:
break;
case tiletype_shape::EMPTY:
/* A heuristic: tubes inside adamantine have EMPTY:AIR tiles which
still have feature_local set. Also check the unrevealed status,
so as to exclude any holes mined by the player. */
if (tilemat == tiletype_material::AIR &&
des.bits.feature_local && des.bits.hidden &&
blockFeatureLocal.type == feature_type::deep_special_tube)
{
tubeTiles.add(global_z);
}
default:
continue;
}
// Count the material type
baseMats[tilemat].add(global_z);
// Find the type of the tile
switch (tilemat)
{
case tiletype_material::SOIL:
case tiletype_material::STONE:
layerMats[b->layerMaterialAt(coord)].add(global_z);
break;
case tiletype_material::MINERAL:
veinMats[b->veinMaterialAt(coord)].add(global_z);
break;
case tiletype_material::FEATURE:
if (blockFeatureLocal.type != -1 && des.bits.feature_local)
{
if (blockFeatureLocal.type == feature_type::deep_special_tube
&& blockFeatureLocal.main_material == 0) // stone
{
veinMats[blockFeatureLocal.sub_material].add(global_z);
}
else if (blockFeatureLocal.type == feature_type::deep_surface_portal)
{
hasDemonTemple = true;
}
}
if (blockFeatureGlobal.type != -1 && des.bits.feature_global
&& blockFeatureGlobal.type == feature_type::underworld_from_layer
&& blockFeatureGlobal.main_material == 0) // stone
{
layerMats[blockFeatureGlobal.sub_material].add(global_z);
}
break;
case tiletype_material::LAVA_STONE:
// TODO ?
break;
default:
break;
}
}
}
// Check plants this way, as the other way wasn't getting them all
// and we can check visibility more easily here
if (options.shrubs)
{
auto block = Maps::getBlockColumn(b_x,b_y);
vector<df::plant *> *plants = block ? &block->plants : NULL;
if(plants)
{
for (PlantList::const_iterator it = plants->begin(); it != plants->end(); it++)
{
const df::plant & plant = *(*it);
if (uint32_t(plant.pos.z) != z)
continue;
df::coord2d loc(plant.pos.x, plant.pos.y);
loc = loc % 16;
if (options.hidden || !b->DesignationAt(loc).bits.hidden)
{
if(plant.flags.bits.is_shrub)
plantMats[plant.material].add(global_z);
else
treeMats[plant.material].add(global_z);
}
}
}
}
// Block end
} // block x
// Clean uneeded memory
map.trash();
} // block y
} // z
MatMap::const_iterator it;
if (options.summary) {
con << "Base materials:" << std::endl;
for (it = baseMats.begin(); it != baseMats.end(); ++it)
{
con << std::setw(25) << ENUM_KEY_STR(tiletype_material,(df::tiletype_material)it->first) << " : " << it->second.count << std::endl;
}
con << std::endl;
}
if (options.liquids && (liquidWater.count || liquidMagma.count))
{
con << "Liquids:" << std::endl;
if (liquidWater.count)
{
con << std::setw(25) << "WATER" << " : ";
printMatdata(con, liquidWater);
}
if (liquidWater.count)
{
con << std::setw(25) << "MAGMA" << " : ";
printMatdata(con, liquidMagma);
}
con << std::endl;
}
if (options.layers) {
con << "Layer materials:" << std::endl;
printMats<df::inorganic_raw, shallower>(con, layerMats, world->raws.inorganics, options);
}
if (options.features) {
con << "Features:" << std::endl;
bool hasFeature = false;
if (aquiferTiles.count)
{
con << std::setw(25) << "Has aquifer" << " : ";
if (options.value)
con << " ";
printMatdata(con, aquiferTiles);
hasFeature = true;
}
if (options.tube && tubeTiles.count)
{
con << std::setw(25) << "Has HFS tubes" << " : ";
if (options.value)
con << " ";
printMatdata(con, tubeTiles, true);
hasFeature = true;
}
if (hasDemonTemple)
{
con << std::setw(25) << "Has demon temple" << std::endl;
hasFeature = true;
}
if (hasLair)
{
con << std::setw(25) << "Has lair" << std::endl;
hasFeature = true;
}
if (!hasFeature)
con << std::setw(25) << "None" << std::endl;
con << std::endl;
}
printVeins(con, veinMats, options);
if (options.shrubs) {
con << "Shrubs:" << std::endl;
printMats<df::plant_raw, std::greater>(con, plantMats, world->raws.plants.all, options);
}
if (options.trees) {
con << "Wood in trees:" << std::endl;
printMats<df::plant_raw, std::greater>(con, treeMats, world->raws.plants.all, options);
}
// Cleanup
mats->Finish();
return CR_OK;
}
static bool get_options(color_ostream &out,
prospect_options &opts,
const vector<string> &parameters)
{
auto L = Lua::Core::State;
Lua::StackUnwinder top(L);
if (!lua_checkstack(L, parameters.size() + 2) ||
!Lua::PushModulePublic(
out, L, "plugins.prospector", "parse_commandline")) {
out.printerr("Failed to load prospector Lua code\n");
return false;
}
Lua::Push(L, &opts);
for (const string &param : parameters)
Lua::Push(L, param);
if (!Lua::SafeCall(out, L, parameters.size() + 1, 0))
return false;
return true;
}
command_result prospector(color_ostream &con, vector <string> & parameters)
{
CoreSuspender suspend;
prospect_options options;
if (!get_options(con, options, parameters) || options.help)
return CR_WRONG_USAGE;
// Embark screen active: estimate using world geology data
auto screen = Gui::getViewscreenByType<df::viewscreen_choose_start_sitest>(0);
return screen ?
embark_prospector(con, screen, options) :
map_prospector(con, options);
}