dfhack/plugins/prospector.cpp

648 lines
21 KiB
C++

// Produces a list of materials available on the map.
// Options:
// -a : show unrevealed tiles
// -p : don't show plants
// -s : don't show slade
// -t : don't show demon temple
//#include <cstdlib>
#include <iostream>
#include <iomanip>
#include <map>
#include <algorithm>
#include <vector>
using namespace std;
#include "Core.h"
#include "Console.h"
#include "Export.h"
#include "PluginManager.h"
#include "modules/MapCache.h"
#include "MiscUtils.h"
#include "DataDefs.h"
#include "df/world.h"
#include "df/world_data.h"
#include "df/world_region_details.h"
#include "df/world_geo_biome.h"
#include "df/world_geo_layer.h"
#include "df/inclusion_type.h"
#include "df/viewscreen_choose_start_sitest.h"
using namespace DFHack;
using namespace df::enums;
using df::global::world;
using df::coord2d;
struct matdata
{
const static int invalid_z = -30000;
matdata()
{
count = 0;
lower_z = invalid_z;
upper_z = invalid_z;
}
matdata (const matdata & copyme)
{
count = copyme.count;
lower_z = copyme.lower_z;
upper_z = copyme.upper_z;
}
unsigned int add( int z_level = invalid_z, int delta = 1 )
{
count += delta;
if(z_level != invalid_z)
{
if(lower_z == invalid_z || z_level < lower_z)
{
lower_z = z_level;
}
if(upper_z == invalid_z || z_level > upper_z)
{
upper_z = z_level;
}
}
return count;
}
unsigned int count;
int lower_z;
int upper_z;
};
bool operator>(const matdata & q1, const matdata & q2)
{
return q1.count > q2.count;
}
template<typename _Tp = matdata >
struct shallower : public binary_function<_Tp, _Tp, bool>
{
bool operator()(const _Tp& top, const _Tp& bottom) const
{
float topavg = (top.lower_z + top.upper_z)/2.0f;
float btmavg = (bottom.lower_z + bottom.upper_z)/2.0f;
return topavg > btmavg;
}
};
typedef std::map<int16_t, matdata> MatMap;
typedef std::vector< pair<int16_t, matdata> > MatSorter;
typedef std::vector<df::plant *> PlantList;
#define TO_PTR_VEC(obj_vec, ptr_vec) \
ptr_vec.clear(); \
for (size_t i = 0; i < obj_vec.size(); i++) \
ptr_vec.push_back(&obj_vec[i])
template<template <typename> class P = std::greater >
struct compare_pair_second
{
template<class T1, class T2>
bool operator()(const std::pair<T1, T2>& left, const std::pair<T1, T2>& right)
{
return P<T2>()(left.second, right.second);
}
};
static void printMatdata(DFHack::Console & con, const matdata &data)
{
con << std::setw(9) << data.count;
if(data.lower_z != data.upper_z)
con <<" Z:" << std::setw(4) << data.lower_z << ".." << data.upper_z << std::endl;
else
con <<" Z:" << std::setw(4) << data.lower_z << std::endl;
}
static int getValue(const df::inorganic_raw &info)
{
return info.material.material_value;
}
static int getValue(const df::plant_raw &info)
{
return info.value;
}
template <typename T, template <typename> class P>
void printMats(DFHack::Console & con, MatMap &mat, std::vector<T*> &materials, bool show_value)
{
unsigned int total = 0;
MatSorter sorting_vector;
for (MatMap::const_iterator it = mat.begin(); it != mat.end(); ++it)
{
sorting_vector.push_back(*it);
}
std::sort(sorting_vector.begin(), sorting_vector.end(),
compare_pair_second<P>());
for (MatSorter::const_iterator it = sorting_vector.begin();
it != sorting_vector.end(); ++it)
{
if(it->first >= materials.size())
{
con << "Bad index: " << it->first << " out of "
<< materials.size() << endl;
continue;
}
T* mat = materials[it->first];
// Somewhat of a hack, but it works because df::inorganic_raw and df::plant_raw both have a field named "id"
con << std::setw(25) << mat->id << " : ";
if (show_value)
con << std::setw(3) << getValue(*mat) << " : ";
printMatdata(con, it->second);
total += it->second.count;
}
con << ">>> TOTAL = " << total << std::endl << std::endl;
}
void printVeins(DFHack::Console & con, MatMap &mat_map,
DFHack::Materials* mats, bool show_value)
{
MatMap ores;
MatMap gems;
MatMap rest;
for (MatMap::const_iterator it = mat_map.begin(); it != mat_map.end(); ++it)
{
df::inorganic_raw *gloss = world->raws.inorganics[it->first];
if (gloss->material.isGem())
gems[it->first] = it->second;
else if (gloss->isOre())
ores[it->first] = it->second;
else
rest[it->first] = it->second;
}
con << "Ores:" << std::endl;
printMats<df::inorganic_raw, std::greater>(con, ores, world->raws.inorganics, show_value);
con << "Gems:" << std::endl;
printMats<df::inorganic_raw, std::greater>(con, gems, world->raws.inorganics, show_value);
con << "Other vein stone:" << std::endl;
printMats<df::inorganic_raw, std::greater>(con, rest, world->raws.inorganics, show_value);
}
command_result prospector (Core * c, vector <string> & parameters);
DFHACK_PLUGIN("prospector");
DFhackCExport command_result plugin_init ( Core * c, std::vector <PluginCommand> &commands)
{
commands.clear();
commands.push_back(PluginCommand(
"prospect", "Show stats of available raw resources.",
prospector, false,
" Prints a big list of all the present minerals.\n"
" By default, only the visible part of the map is scanned.\n"
"Options:\n"
" all - Scan the whole map, as if it was revealed.\n"
" value - Show material value in the output. Most useful for gems.\n"
" hell - Show the Z range of HFS tubes. Implies 'all'.\n"
"Pre-embark estimate:\n"
" If called during the embark selection screen, displays\n"
" an estimate of layer stone availability. If the 'all'\n"
" option is specified, also estimates veins.\n"
" The estimate is computed either for 1 embark tile of the\n"
" blinking biome, or for all tiles of the embark rectangle.\n"
));
return CR_OK;
}
DFhackCExport command_result plugin_shutdown ( Core * c )
{
return CR_OK;
}
static coord2d biome_delta[] = {
coord2d(-1,1), coord2d(0,1), coord2d(1,1),
coord2d(-1,0), coord2d(0,0), coord2d(1,0),
coord2d(-1,-1), coord2d(0,-1), coord2d(1,-1)
};
static command_result embark_prospector(DFHack::Core *c, df::viewscreen_choose_start_sitest *screen,
bool showHidden, bool showValue)
{
if (!world || !world->world_data)
{
c->con.printerr("World data is not available.\n");
return CR_FAILURE;
}
df::world_data *data = world->world_data;
coord2d cur_region = screen->region_pos;
int d_idx = linear_index(data->region_details, &df::world_region_details::pos, cur_region);
auto cur_details = vector_get(data->region_details, d_idx);
if (!cur_details)
{
c->con.printerr("Current region details are not available.\n");
return CR_FAILURE;
}
// Compute biomes
std::map<coord2d, int> biomes;
if (screen->biome_highlighted)
{
c->con.print("Processing one embark tile of biome F%d.\n\n", screen->biome_idx+1);
biomes[screen->biome_rgn[screen->biome_idx]]++;
}
else
{
for (int x = screen->embark_pos_min.x; x <= screen->embark_pos_max.x; x++)
{
for (int y = screen->embark_pos_min.y; y <= screen->embark_pos_max.y; y++)
{
int bv = clip_range(cur_details->biome[x][y], 1, 9);
biomes[cur_region + biome_delta[bv-1]]++;
}
}
}
// Compute material maps
MatMap layerMats;
MatMap veinMats;
for (auto biome_it = biomes.begin(); biome_it != biomes.end(); ++biome_it)
{
int bx = clip_range(biome_it->first.x, 0, data->world_width-1);
int by = clip_range(biome_it->first.y, 0, data->world_height-1);
auto &region = data->region_map[bx][by];
df::world_geo_biome *geo_biome = df::world_geo_biome::find(region.geo_index);
if (!geo_biome)
{
c->con.printerr("Region geo-biome not found: (%d,%d)\n", bx, by);
return CR_FAILURE;
}
int cnt = biome_it->second;
for (unsigned i = 0; i < geo_biome->layers.size(); i++)
{
auto layer = geo_biome->layers[i];
layerMats[layer->mat_index].add(layer->bottom_height, 0);
int level_cnt = layer->top_height - layer->bottom_height + 1;
int layer_size = 48*48*cnt*level_cnt;
int sums[ENUM_LAST_ITEM(inclusion_type)+1] = { 0 };
for (unsigned j = 0; j < layer->vein_mat.size(); j++)
if (inclusion_type::is_valid(layer->vein_type[j]))
sums[layer->vein_type[j]] += layer->vein_unk_38[j];
for (unsigned j = 0; j < layer->vein_mat.size(); j++)
{
// TODO: find out how to estimate the real density
// this code assumes that vein_unk_38 is the weight
// used when choosing the vein material
int size = layer->vein_unk_38[j]*cnt*level_cnt;
df::inclusion_type type = layer->vein_type[j];
switch (type)
{
case inclusion_type::VEIN:
// 3 veins of 80 tiles avg
size = size * 80 * 3 / sums[type];
break;
case inclusion_type::CLUSTER:
// 1 cluster of 700 tiles avg
size = size * 700 * 1 / sums[type];
break;
case inclusion_type::CLUSTER_SMALL:
size = size * 6 * 7 / sums[type];
break;
case inclusion_type::CLUSTER_ONE:
size = size * 1 * 5 / sums[type];
break;
default:
// shouldn't actually happen
size = cnt*level_cnt;
}
veinMats[layer->vein_mat[j]].add(layer->bottom_height, 0);
veinMats[layer->vein_mat[j]].add(layer->top_height, size);
layer_size -= size;
}
layerMats[layer->mat_index].add(layer->top_height, std::max(0,layer_size));
}
}
// Print the report
c->con << "Layer materials:" << std::endl;
printMats<df::inorganic_raw, shallower>(c->con, layerMats, world->raws.inorganics, showValue);
if (showHidden) {
DFHack::Materials *mats = c->getMaterials();
printVeins(c->con, veinMats, mats, showValue);
mats->Finish();
}
c->con << "Warning: the above data is only a very rough estimate." << std::endl;
return CR_OK;
}
command_result prospector (DFHack::Core * c, vector <string> & parameters)
{
bool showHidden = false;
bool showPlants = true;
bool showSlade = true;
bool showTemple = true;
bool showValue = false;
bool showTube = false;
Console & con = c->con;
for(size_t i = 0; i < parameters.size();i++)
{
if (parameters[i] == "all")
{
showHidden = true;
}
else if (parameters[i] == "value")
{
showValue = true;
}
else if (parameters[i] == "hell")
{
showHidden = showTube = true;
}
else
return CR_WRONG_USAGE;
}
CoreSuspender suspend(c);
// Embark screen active: estimate using world geology data
if (VIRTUAL_CAST_VAR(screen, df::viewscreen_choose_start_sitest, c->getTopViewscreen()))
return embark_prospector(c, screen, showHidden, showValue);
if (!Maps::IsValid())
{
c->con.printerr("Map is not available!\n");
return CR_FAILURE;
}
uint32_t x_max = 0, y_max = 0, z_max = 0;
Maps::getSize(x_max, y_max, z_max);
MapExtras::MapCache map;
DFHack::Materials *mats = c->getMaterials();
DFHack::t_feature blockFeatureGlobal;
DFHack::t_feature blockFeatureLocal;
bool hasAquifer = false;
bool hasDemonTemple = false;
bool hasLair = false;
MatMap baseMats;
MatMap layerMats;
MatMap veinMats;
MatMap plantMats;
MatMap treeMats;
matdata liquidWater;
matdata liquidMagma;
matdata aquiferTiles;
matdata tubeTiles;
uint32_t vegCount = 0;
for(uint32_t z = 0; z < z_max; z++)
{
for(uint32_t b_y = 0; b_y < y_max; b_y++)
{
for(uint32_t b_x = 0; b_x < x_max; b_x++)
{
// Get the map block
df::coord2d blockCoord(b_x, b_y);
MapExtras::Block *b = map.BlockAt(DFHack::DFCoord(b_x, b_y, z));
if (!b || !b->valid)
{
continue;
}
{ // Find features
uint32_t index = b->raw.global_feature;
if (index != -1)
Maps::GetGlobalFeature(blockFeatureGlobal, index);
index = b->raw.local_feature;
if (index != -1)
Maps::GetLocalFeature(blockFeatureLocal, blockCoord, index);
}
int global_z = world->map.region_z + z;
// Iterate over all the tiles in the block
for(uint32_t y = 0; y < 16; y++)
{
for(uint32_t x = 0; x < 16; x++)
{
df::coord2d coord(x, y);
df::tile_designation des = b->DesignationAt(coord);
df::tile_occupancy occ = b->OccupancyAt(coord);
// Skip hidden tiles
if (!showHidden && des.bits.hidden)
{
continue;
}
// Check for aquifer
if (des.bits.water_table)
{
hasAquifer = true;
aquiferTiles.add(global_z);
}
// Check for lairs
if (occ.bits.monster_lair)
{
hasLair = true;
}
// Check for liquid
if (des.bits.flow_size)
{
if (des.bits.liquid_type == tile_liquid::Magma)
liquidMagma.add(global_z);
else
liquidWater.add(global_z);
}
df::tiletype type = b->TileTypeAt(coord);
df::tiletype_shape tileshape = tileShape(type);
df::tiletype_material tilemat = tileMaterial(type);
// We only care about these types
switch (tileshape)
{
case tiletype_shape::WALL:
case tiletype_shape::FORTIFICATION:
break;
case tiletype_shape::EMPTY:
/* A heuristic: tubes inside adamantine have EMPTY:AIR tiles which
still have feature_local set. Also check the unrevealed status,
so as to exclude any holes mined by the player. */
if (tilemat == tiletype_material::AIR &&
des.bits.feature_local && des.bits.hidden &&
blockFeatureLocal.type == feature_type::deep_special_tube)
{
tubeTiles.add(global_z);
}
default:
continue;
}
// Count the material type
baseMats[tilemat].add(global_z);
// Find the type of the tile
switch (tilemat)
{
case tiletype_material::SOIL:
case tiletype_material::STONE:
layerMats[b->baseMaterialAt(coord)].add(global_z);
break;
case tiletype_material::MINERAL:
veinMats[b->veinMaterialAt(coord)].add(global_z);
break;
case tiletype_material::FEATURE:
if (blockFeatureLocal.type != -1 && des.bits.feature_local)
{
if (blockFeatureLocal.type == feature_type::deep_special_tube
&& blockFeatureLocal.main_material == 0) // stone
{
veinMats[blockFeatureLocal.sub_material].add(global_z);
}
else if (showTemple
&& blockFeatureLocal.type == feature_type::deep_surface_portal)
{
hasDemonTemple = true;
}
}
if (showSlade && blockFeatureGlobal.type != -1 && des.bits.feature_global
&& blockFeatureGlobal.type == feature_type::feature_underworld_from_layer
&& blockFeatureGlobal.main_material == 0) // stone
{
layerMats[blockFeatureGlobal.sub_material].add(global_z);
}
break;
case tiletype_material::LAVA_STONE:
// TODO ?
break;
}
}
}
// Check plants this way, as the other way wasn't getting them all
// and we can check visibility more easily here
if (showPlants)
{
PlantList * plants;
if (Maps::ReadVegetation(b_x, b_y, z, plants))
{
for (PlantList::const_iterator it = plants->begin(); it != plants->end(); it++)
{
const df::plant & plant = *(*it);
df::coord2d loc(plant.pos.x, plant.pos.y);
loc = loc % 16;
if (showHidden || !b->DesignationAt(loc).bits.hidden)
{
if(plant.flags.bits.is_shrub)
plantMats[plant.material].add(global_z);
else
treeMats[plant.material].add(global_z);
}
}
}
}
// Block end
} // block x
// Clean uneeded memory
map.trash();
} // block y
} // z
MatMap::const_iterator it;
con << "Base materials:" << std::endl;
for (it = baseMats.begin(); it != baseMats.end(); ++it)
{
con << std::setw(25) << ENUM_KEY_STR(tiletype_material,(df::tiletype_material)it->first) << " : " << it->second.count << std::endl;
}
if (liquidWater.count || liquidMagma.count)
{
con << std::endl << "Liquids:" << std::endl;
if (liquidWater.count)
{
con << std::setw(25) << "WATER" << " : ";
printMatdata(con, liquidWater);
}
if (liquidWater.count)
{
con << std::setw(25) << "MAGMA" << " : ";
printMatdata(con, liquidMagma);
}
}
con << std::endl << "Layer materials:" << std::endl;
printMats<df::inorganic_raw, shallower>(con, layerMats, world->raws.inorganics, showValue);
printVeins(con, veinMats, mats, showValue);
if (showPlants)
{
con << "Shrubs:" << std::endl;
printMats<df::plant_raw, std::greater>(con, plantMats, world->raws.plants.all, showValue);
con << "Wood in trees:" << std::endl;
printMats<df::plant_raw, std::greater>(con, treeMats, world->raws.plants.all, showValue);
}
if (hasAquifer)
{
con << "Has aquifer";
if (aquiferTiles.count)
{
con << " : ";
printMatdata(con, aquiferTiles);
}
else
con << std::endl;
}
if (showTube && tubeTiles.count)
{
con << "Has HFS tubes : ";
printMatdata(con, tubeTiles);
}
if (hasDemonTemple)
{
con << "Has demon temple" << std::endl;
}
if (hasLair)
{
con << "Has lair" << std::endl;
}
// Cleanup
mats->Finish();
con << std::endl;
return CR_OK;
}