905 lines
43 KiB
C++
905 lines
43 KiB
C++
// Protocol Buffers - Google's data interchange format
|
|
// Copyright 2008 Google Inc. All rights reserved.
|
|
// http://code.google.com/p/protobuf/
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
// Author: kenton@google.com (Kenton Varda)
|
|
// Based on original Protocol Buffers design by
|
|
// Sanjay Ghemawat, Jeff Dean, and others.
|
|
//
|
|
// This header is logically internal, but is made public because it is used
|
|
// from protocol-compiler-generated code, which may reside in other components.
|
|
|
|
#ifndef GOOGLE_PROTOBUF_EXTENSION_SET_H__
|
|
#define GOOGLE_PROTOBUF_EXTENSION_SET_H__
|
|
|
|
#include <vector>
|
|
#include <map>
|
|
#include <utility>
|
|
#include <string>
|
|
|
|
|
|
#include <google/protobuf/stubs/common.h>
|
|
|
|
namespace google {
|
|
|
|
namespace protobuf {
|
|
class Descriptor; // descriptor.h
|
|
class FieldDescriptor; // descriptor.h
|
|
class DescriptorPool; // descriptor.h
|
|
class MessageLite; // message_lite.h
|
|
class Message; // message.h
|
|
class MessageFactory; // message.h
|
|
class UnknownFieldSet; // unknown_field_set.h
|
|
namespace io {
|
|
class CodedInputStream; // coded_stream.h
|
|
class CodedOutputStream; // coded_stream.h
|
|
}
|
|
namespace internal {
|
|
class FieldSkipper; // wire_format_lite.h
|
|
class RepeatedPtrFieldBase; // repeated_field.h
|
|
}
|
|
template <typename Element> class RepeatedField; // repeated_field.h
|
|
template <typename Element> class RepeatedPtrField; // repeated_field.h
|
|
}
|
|
|
|
namespace protobuf {
|
|
namespace internal {
|
|
|
|
// Used to store values of type WireFormatLite::FieldType without having to
|
|
// #include wire_format_lite.h. Also, ensures that we use only one byte to
|
|
// store these values, which is important to keep the layout of
|
|
// ExtensionSet::Extension small.
|
|
typedef uint8 FieldType;
|
|
|
|
// A function which, given an integer value, returns true if the number
|
|
// matches one of the defined values for the corresponding enum type. This
|
|
// is used with RegisterEnumExtension, below.
|
|
typedef bool EnumValidityFunc(int number);
|
|
|
|
// Version of the above which takes an argument. This is needed to deal with
|
|
// extensions that are not compiled in.
|
|
typedef bool EnumValidityFuncWithArg(const void* arg, int number);
|
|
|
|
// Information about a registered extension.
|
|
struct ExtensionInfo {
|
|
inline ExtensionInfo() {}
|
|
inline ExtensionInfo(FieldType type, bool is_repeated, bool is_packed)
|
|
: type(type), is_repeated(is_repeated), is_packed(is_packed),
|
|
descriptor(NULL) {}
|
|
|
|
FieldType type;
|
|
bool is_repeated;
|
|
bool is_packed;
|
|
|
|
struct EnumValidityCheck {
|
|
EnumValidityFuncWithArg* func;
|
|
const void* arg;
|
|
};
|
|
|
|
union {
|
|
EnumValidityCheck enum_validity_check;
|
|
const MessageLite* message_prototype;
|
|
};
|
|
|
|
// The descriptor for this extension, if one exists and is known. May be
|
|
// NULL. Must not be NULL if the descriptor for the extension does not
|
|
// live in the same pool as the descriptor for the containing type.
|
|
const FieldDescriptor* descriptor;
|
|
};
|
|
|
|
// Abstract interface for an object which looks up extension definitions. Used
|
|
// when parsing.
|
|
class LIBPROTOBUF_EXPORT ExtensionFinder {
|
|
public:
|
|
virtual ~ExtensionFinder();
|
|
|
|
// Find the extension with the given containing type and number.
|
|
virtual bool Find(int number, ExtensionInfo* output) = 0;
|
|
};
|
|
|
|
// Implementation of ExtensionFinder which finds extensions defined in .proto
|
|
// files which have been compiled into the binary.
|
|
class LIBPROTOBUF_EXPORT GeneratedExtensionFinder : public ExtensionFinder {
|
|
public:
|
|
GeneratedExtensionFinder(const MessageLite* containing_type)
|
|
: containing_type_(containing_type) {}
|
|
virtual ~GeneratedExtensionFinder() {}
|
|
|
|
// Returns true and fills in *output if found, otherwise returns false.
|
|
virtual bool Find(int number, ExtensionInfo* output);
|
|
|
|
private:
|
|
const MessageLite* containing_type_;
|
|
};
|
|
|
|
// Note: extension_set_heavy.cc defines DescriptorPoolExtensionFinder for
|
|
// finding extensions from a DescriptorPool.
|
|
|
|
// This is an internal helper class intended for use within the protocol buffer
|
|
// library and generated classes. Clients should not use it directly. Instead,
|
|
// use the generated accessors such as GetExtension() of the class being
|
|
// extended.
|
|
//
|
|
// This class manages extensions for a protocol message object. The
|
|
// message's HasExtension(), GetExtension(), MutableExtension(), and
|
|
// ClearExtension() methods are just thin wrappers around the embedded
|
|
// ExtensionSet. When parsing, if a tag number is encountered which is
|
|
// inside one of the message type's extension ranges, the tag is passed
|
|
// off to the ExtensionSet for parsing. Etc.
|
|
class LIBPROTOBUF_EXPORT ExtensionSet {
|
|
public:
|
|
ExtensionSet();
|
|
~ExtensionSet();
|
|
|
|
// These are called at startup by protocol-compiler-generated code to
|
|
// register known extensions. The registrations are used by ParseField()
|
|
// to look up extensions for parsed field numbers. Note that dynamic parsing
|
|
// does not use ParseField(); only protocol-compiler-generated parsing
|
|
// methods do.
|
|
static void RegisterExtension(const MessageLite* containing_type,
|
|
int number, FieldType type,
|
|
bool is_repeated, bool is_packed);
|
|
static void RegisterEnumExtension(const MessageLite* containing_type,
|
|
int number, FieldType type,
|
|
bool is_repeated, bool is_packed,
|
|
EnumValidityFunc* is_valid);
|
|
static void RegisterMessageExtension(const MessageLite* containing_type,
|
|
int number, FieldType type,
|
|
bool is_repeated, bool is_packed,
|
|
const MessageLite* prototype);
|
|
|
|
// =================================================================
|
|
|
|
// Add all fields which are currently present to the given vector. This
|
|
// is useful to implement Reflection::ListFields().
|
|
void AppendToList(const Descriptor* containing_type,
|
|
const DescriptorPool* pool,
|
|
vector<const FieldDescriptor*>* output) const;
|
|
|
|
// =================================================================
|
|
// Accessors
|
|
//
|
|
// Generated message classes include type-safe templated wrappers around
|
|
// these methods. Generally you should use those rather than call these
|
|
// directly, unless you are doing low-level memory management.
|
|
//
|
|
// When calling any of these accessors, the extension number requested
|
|
// MUST exist in the DescriptorPool provided to the constructor. Otheriwse,
|
|
// the method will fail an assert. Normally, though, you would not call
|
|
// these directly; you would either call the generated accessors of your
|
|
// message class (e.g. GetExtension()) or you would call the accessors
|
|
// of the reflection interface. In both cases, it is impossible to
|
|
// trigger this assert failure: the generated accessors only accept
|
|
// linked-in extension types as parameters, while the Reflection interface
|
|
// requires you to provide the FieldDescriptor describing the extension.
|
|
//
|
|
// When calling any of these accessors, a protocol-compiler-generated
|
|
// implementation of the extension corresponding to the number MUST
|
|
// be linked in, and the FieldDescriptor used to refer to it MUST be
|
|
// the one generated by that linked-in code. Otherwise, the method will
|
|
// die on an assert failure. The message objects returned by the message
|
|
// accessors are guaranteed to be of the correct linked-in type.
|
|
//
|
|
// These methods pretty much match Reflection except that:
|
|
// - They're not virtual.
|
|
// - They identify fields by number rather than FieldDescriptors.
|
|
// - They identify enum values using integers rather than descriptors.
|
|
// - Strings provide Mutable() in addition to Set() accessors.
|
|
|
|
bool Has(int number) const;
|
|
int ExtensionSize(int number) const; // Size of a repeated extension.
|
|
FieldType ExtensionType(int number) const;
|
|
void ClearExtension(int number);
|
|
|
|
// singular fields -------------------------------------------------
|
|
|
|
int32 GetInt32 (int number, int32 default_value) const;
|
|
int64 GetInt64 (int number, int64 default_value) const;
|
|
uint32 GetUInt32(int number, uint32 default_value) const;
|
|
uint64 GetUInt64(int number, uint64 default_value) const;
|
|
float GetFloat (int number, float default_value) const;
|
|
double GetDouble(int number, double default_value) const;
|
|
bool GetBool (int number, bool default_value) const;
|
|
int GetEnum (int number, int default_value) const;
|
|
const string & GetString (int number, const string& default_value) const;
|
|
const MessageLite& GetMessage(int number,
|
|
const MessageLite& default_value) const;
|
|
const MessageLite& GetMessage(int number, const Descriptor* message_type,
|
|
MessageFactory* factory) const;
|
|
|
|
// |descriptor| may be NULL so long as it is known that the descriptor for
|
|
// the extension lives in the same pool as the descriptor for the containing
|
|
// type.
|
|
#define desc const FieldDescriptor* descriptor // avoid line wrapping
|
|
void SetInt32 (int number, FieldType type, int32 value, desc);
|
|
void SetInt64 (int number, FieldType type, int64 value, desc);
|
|
void SetUInt32(int number, FieldType type, uint32 value, desc);
|
|
void SetUInt64(int number, FieldType type, uint64 value, desc);
|
|
void SetFloat (int number, FieldType type, float value, desc);
|
|
void SetDouble(int number, FieldType type, double value, desc);
|
|
void SetBool (int number, FieldType type, bool value, desc);
|
|
void SetEnum (int number, FieldType type, int value, desc);
|
|
void SetString(int number, FieldType type, const string& value, desc);
|
|
string * MutableString (int number, FieldType type, desc);
|
|
MessageLite* MutableMessage(int number, FieldType type,
|
|
const MessageLite& prototype, desc);
|
|
MessageLite* MutableMessage(const FieldDescriptor* decsriptor,
|
|
MessageFactory* factory);
|
|
#undef desc
|
|
|
|
// repeated fields -------------------------------------------------
|
|
|
|
int32 GetRepeatedInt32 (int number, int index) const;
|
|
int64 GetRepeatedInt64 (int number, int index) const;
|
|
uint32 GetRepeatedUInt32(int number, int index) const;
|
|
uint64 GetRepeatedUInt64(int number, int index) const;
|
|
float GetRepeatedFloat (int number, int index) const;
|
|
double GetRepeatedDouble(int number, int index) const;
|
|
bool GetRepeatedBool (int number, int index) const;
|
|
int GetRepeatedEnum (int number, int index) const;
|
|
const string & GetRepeatedString (int number, int index) const;
|
|
const MessageLite& GetRepeatedMessage(int number, int index) const;
|
|
|
|
void SetRepeatedInt32 (int number, int index, int32 value);
|
|
void SetRepeatedInt64 (int number, int index, int64 value);
|
|
void SetRepeatedUInt32(int number, int index, uint32 value);
|
|
void SetRepeatedUInt64(int number, int index, uint64 value);
|
|
void SetRepeatedFloat (int number, int index, float value);
|
|
void SetRepeatedDouble(int number, int index, double value);
|
|
void SetRepeatedBool (int number, int index, bool value);
|
|
void SetRepeatedEnum (int number, int index, int value);
|
|
void SetRepeatedString(int number, int index, const string& value);
|
|
string * MutableRepeatedString (int number, int index);
|
|
MessageLite* MutableRepeatedMessage(int number, int index);
|
|
|
|
#define desc const FieldDescriptor* descriptor // avoid line wrapping
|
|
void AddInt32 (int number, FieldType type, bool packed, int32 value, desc);
|
|
void AddInt64 (int number, FieldType type, bool packed, int64 value, desc);
|
|
void AddUInt32(int number, FieldType type, bool packed, uint32 value, desc);
|
|
void AddUInt64(int number, FieldType type, bool packed, uint64 value, desc);
|
|
void AddFloat (int number, FieldType type, bool packed, float value, desc);
|
|
void AddDouble(int number, FieldType type, bool packed, double value, desc);
|
|
void AddBool (int number, FieldType type, bool packed, bool value, desc);
|
|
void AddEnum (int number, FieldType type, bool packed, int value, desc);
|
|
void AddString(int number, FieldType type, const string& value, desc);
|
|
string * AddString (int number, FieldType type, desc);
|
|
MessageLite* AddMessage(int number, FieldType type,
|
|
const MessageLite& prototype, desc);
|
|
MessageLite* AddMessage(const FieldDescriptor* descriptor,
|
|
MessageFactory* factory);
|
|
#undef desc
|
|
|
|
void RemoveLast(int number);
|
|
void SwapElements(int number, int index1, int index2);
|
|
|
|
// -----------------------------------------------------------------
|
|
// TODO(kenton): Hardcore memory management accessors
|
|
|
|
// =================================================================
|
|
// convenience methods for implementing methods of Message
|
|
//
|
|
// These could all be implemented in terms of the other methods of this
|
|
// class, but providing them here helps keep the generated code size down.
|
|
|
|
void Clear();
|
|
void MergeFrom(const ExtensionSet& other);
|
|
void Swap(ExtensionSet* other);
|
|
bool IsInitialized() const;
|
|
|
|
// Parses a single extension from the input. The input should start out
|
|
// positioned immediately after the tag. |containing_type| is the default
|
|
// instance for the containing message; it is used only to look up the
|
|
// extension by number. See RegisterExtension(), above. Unlike the other
|
|
// methods of ExtensionSet, this only works for generated message types --
|
|
// it looks up extensions registered using RegisterExtension().
|
|
bool ParseField(uint32 tag, io::CodedInputStream* input,
|
|
ExtensionFinder* extension_finder,
|
|
FieldSkipper* field_skipper);
|
|
|
|
// Specific versions for lite or full messages (constructs the appropriate
|
|
// FieldSkipper automatically).
|
|
bool ParseField(uint32 tag, io::CodedInputStream* input,
|
|
const MessageLite* containing_type);
|
|
bool ParseField(uint32 tag, io::CodedInputStream* input,
|
|
const Message* containing_type,
|
|
UnknownFieldSet* unknown_fields);
|
|
|
|
// Parse an entire message in MessageSet format. Such messages have no
|
|
// fields, only extensions.
|
|
bool ParseMessageSet(io::CodedInputStream* input,
|
|
ExtensionFinder* extension_finder,
|
|
FieldSkipper* field_skipper);
|
|
|
|
// Specific versions for lite or full messages (constructs the appropriate
|
|
// FieldSkipper automatically).
|
|
bool ParseMessageSet(io::CodedInputStream* input,
|
|
const MessageLite* containing_type);
|
|
bool ParseMessageSet(io::CodedInputStream* input,
|
|
const Message* containing_type,
|
|
UnknownFieldSet* unknown_fields);
|
|
|
|
// Write all extension fields with field numbers in the range
|
|
// [start_field_number, end_field_number)
|
|
// to the output stream, using the cached sizes computed when ByteSize() was
|
|
// last called. Note that the range bounds are inclusive-exclusive.
|
|
void SerializeWithCachedSizes(int start_field_number,
|
|
int end_field_number,
|
|
io::CodedOutputStream* output) const;
|
|
|
|
// Same as SerializeWithCachedSizes, but without any bounds checking.
|
|
// The caller must ensure that target has sufficient capacity for the
|
|
// serialized extensions.
|
|
//
|
|
// Returns a pointer past the last written byte.
|
|
uint8* SerializeWithCachedSizesToArray(int start_field_number,
|
|
int end_field_number,
|
|
uint8* target) const;
|
|
|
|
// Like above but serializes in MessageSet format.
|
|
void SerializeMessageSetWithCachedSizes(io::CodedOutputStream* output) const;
|
|
uint8* SerializeMessageSetWithCachedSizesToArray(uint8* target) const;
|
|
|
|
// Returns the total serialized size of all the extensions.
|
|
int ByteSize() const;
|
|
|
|
// Like ByteSize() but uses MessageSet format.
|
|
int MessageSetByteSize() const;
|
|
|
|
// Returns (an estimate of) the total number of bytes used for storing the
|
|
// extensions in memory, excluding sizeof(*this). If the ExtensionSet is
|
|
// for a lite message (and thus possibly contains lite messages), the results
|
|
// are undefined (might work, might crash, might corrupt data, might not even
|
|
// be linked in). It's up to the protocol compiler to avoid calling this on
|
|
// such ExtensionSets (easy enough since lite messages don't implement
|
|
// SpaceUsed()).
|
|
int SpaceUsedExcludingSelf() const;
|
|
|
|
private:
|
|
|
|
struct Extension {
|
|
union {
|
|
int32 int32_value;
|
|
int64 int64_value;
|
|
uint32 uint32_value;
|
|
uint64 uint64_value;
|
|
float float_value;
|
|
double double_value;
|
|
bool bool_value;
|
|
int enum_value;
|
|
string* string_value;
|
|
MessageLite* message_value;
|
|
|
|
RepeatedField <int32 >* repeated_int32_value;
|
|
RepeatedField <int64 >* repeated_int64_value;
|
|
RepeatedField <uint32 >* repeated_uint32_value;
|
|
RepeatedField <uint64 >* repeated_uint64_value;
|
|
RepeatedField <float >* repeated_float_value;
|
|
RepeatedField <double >* repeated_double_value;
|
|
RepeatedField <bool >* repeated_bool_value;
|
|
RepeatedField <int >* repeated_enum_value;
|
|
RepeatedPtrField<string >* repeated_string_value;
|
|
RepeatedPtrField<MessageLite>* repeated_message_value;
|
|
};
|
|
|
|
FieldType type;
|
|
bool is_repeated;
|
|
|
|
// For singular types, indicates if the extension is "cleared". This
|
|
// happens when an extension is set and then later cleared by the caller.
|
|
// We want to keep the Extension object around for reuse, so instead of
|
|
// removing it from the map, we just set is_cleared = true. This has no
|
|
// meaning for repeated types; for those, the size of the RepeatedField
|
|
// simply becomes zero when cleared.
|
|
bool is_cleared;
|
|
|
|
// For repeated types, this indicates if the [packed=true] option is set.
|
|
bool is_packed;
|
|
|
|
// The descriptor for this extension, if one exists and is known. May be
|
|
// NULL. Must not be NULL if the descriptor for the extension does not
|
|
// live in the same pool as the descriptor for the containing type.
|
|
const FieldDescriptor* descriptor;
|
|
|
|
// For packed fields, the size of the packed data is recorded here when
|
|
// ByteSize() is called then used during serialization.
|
|
// TODO(kenton): Use atomic<int> when C++ supports it.
|
|
mutable int cached_size;
|
|
|
|
// Some helper methods for operations on a single Extension.
|
|
void SerializeFieldWithCachedSizes(
|
|
int number,
|
|
io::CodedOutputStream* output) const;
|
|
uint8* SerializeFieldWithCachedSizesToArray(
|
|
int number,
|
|
uint8* target) const;
|
|
void SerializeMessageSetItemWithCachedSizes(
|
|
int number,
|
|
io::CodedOutputStream* output) const;
|
|
uint8* SerializeMessageSetItemWithCachedSizesToArray(
|
|
int number,
|
|
uint8* target) const;
|
|
int ByteSize(int number) const;
|
|
int MessageSetItemByteSize(int number) const;
|
|
void Clear();
|
|
int GetSize() const;
|
|
void Free();
|
|
int SpaceUsedExcludingSelf() const;
|
|
};
|
|
|
|
|
|
// Gets the extension with the given number, creating it if it does not
|
|
// already exist. Returns true if the extension did not already exist.
|
|
bool MaybeNewExtension(int number, const FieldDescriptor* descriptor,
|
|
Extension** result);
|
|
|
|
// Parse a single MessageSet item -- called just after the item group start
|
|
// tag has been read.
|
|
bool ParseMessageSetItem(io::CodedInputStream* input,
|
|
ExtensionFinder* extension_finder,
|
|
FieldSkipper* field_skipper);
|
|
|
|
|
|
// Hack: RepeatedPtrFieldBase declares ExtensionSet as a friend. This
|
|
// friendship should automatically extend to ExtensionSet::Extension, but
|
|
// unfortunately some older compilers (e.g. GCC 3.4.4) do not implement this
|
|
// correctly. So, we must provide helpers for calling methods of that
|
|
// class.
|
|
|
|
// Defined in extension_set_heavy.cc.
|
|
static inline int RepeatedMessage_SpaceUsedExcludingSelf(
|
|
RepeatedPtrFieldBase* field);
|
|
|
|
// The Extension struct is small enough to be passed by value, so we use it
|
|
// directly as the value type in the map rather than use pointers. We use
|
|
// a map rather than hash_map here because we expect most ExtensionSets will
|
|
// only contain a small number of extensions whereas hash_map is optimized
|
|
// for 100 elements or more. Also, we want AppendToList() to order fields
|
|
// by field number.
|
|
map<int, Extension> extensions_;
|
|
|
|
GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(ExtensionSet);
|
|
};
|
|
|
|
// These are just for convenience...
|
|
inline void ExtensionSet::SetString(int number, FieldType type,
|
|
const string& value,
|
|
const FieldDescriptor* descriptor) {
|
|
MutableString(number, type, descriptor)->assign(value);
|
|
}
|
|
inline void ExtensionSet::SetRepeatedString(int number, int index,
|
|
const string& value) {
|
|
MutableRepeatedString(number, index)->assign(value);
|
|
}
|
|
inline void ExtensionSet::AddString(int number, FieldType type,
|
|
const string& value,
|
|
const FieldDescriptor* descriptor) {
|
|
AddString(number, type, descriptor)->assign(value);
|
|
}
|
|
|
|
// ===================================================================
|
|
// Glue for generated extension accessors
|
|
|
|
// -------------------------------------------------------------------
|
|
// Template magic
|
|
|
|
// First we have a set of classes representing "type traits" for different
|
|
// field types. A type traits class knows how to implement basic accessors
|
|
// for extensions of a particular type given an ExtensionSet. The signature
|
|
// for a type traits class looks like this:
|
|
//
|
|
// class TypeTraits {
|
|
// public:
|
|
// typedef ? ConstType;
|
|
// typedef ? MutableType;
|
|
//
|
|
// static inline ConstType Get(int number, const ExtensionSet& set);
|
|
// static inline void Set(int number, ConstType value, ExtensionSet* set);
|
|
// static inline MutableType Mutable(int number, ExtensionSet* set);
|
|
//
|
|
// // Variants for repeated fields.
|
|
// static inline ConstType Get(int number, const ExtensionSet& set,
|
|
// int index);
|
|
// static inline void Set(int number, int index,
|
|
// ConstType value, ExtensionSet* set);
|
|
// static inline MutableType Mutable(int number, int index,
|
|
// ExtensionSet* set);
|
|
// static inline void Add(int number, ConstType value, ExtensionSet* set);
|
|
// static inline MutableType Add(int number, ExtensionSet* set);
|
|
// };
|
|
//
|
|
// Not all of these methods make sense for all field types. For example, the
|
|
// "Mutable" methods only make sense for strings and messages, and the
|
|
// repeated methods only make sense for repeated types. So, each type
|
|
// traits class implements only the set of methods from this signature that it
|
|
// actually supports. This will cause a compiler error if the user tries to
|
|
// access an extension using a method that doesn't make sense for its type.
|
|
// For example, if "foo" is an extension of type "optional int32", then if you
|
|
// try to write code like:
|
|
// my_message.MutableExtension(foo)
|
|
// you will get a compile error because PrimitiveTypeTraits<int32> does not
|
|
// have a "Mutable()" method.
|
|
|
|
// -------------------------------------------------------------------
|
|
// PrimitiveTypeTraits
|
|
|
|
// Since the ExtensionSet has different methods for each primitive type,
|
|
// we must explicitly define the methods of the type traits class for each
|
|
// known type.
|
|
template <typename Type>
|
|
class PrimitiveTypeTraits {
|
|
public:
|
|
typedef Type ConstType;
|
|
|
|
static inline ConstType Get(int number, const ExtensionSet& set,
|
|
ConstType default_value);
|
|
static inline void Set(int number, FieldType field_type,
|
|
ConstType value, ExtensionSet* set);
|
|
};
|
|
|
|
template <typename Type>
|
|
class RepeatedPrimitiveTypeTraits {
|
|
public:
|
|
typedef Type ConstType;
|
|
|
|
static inline Type Get(int number, const ExtensionSet& set, int index);
|
|
static inline void Set(int number, int index, Type value, ExtensionSet* set);
|
|
static inline void Add(int number, FieldType field_type,
|
|
bool is_packed, Type value, ExtensionSet* set);
|
|
};
|
|
|
|
#define PROTOBUF_DEFINE_PRIMITIVE_TYPE(TYPE, METHOD) \
|
|
template<> inline TYPE PrimitiveTypeTraits<TYPE>::Get( \
|
|
int number, const ExtensionSet& set, TYPE default_value) { \
|
|
return set.Get##METHOD(number, default_value); \
|
|
} \
|
|
template<> inline void PrimitiveTypeTraits<TYPE>::Set( \
|
|
int number, FieldType field_type, TYPE value, ExtensionSet* set) { \
|
|
set->Set##METHOD(number, field_type, value, NULL); \
|
|
} \
|
|
\
|
|
template<> inline TYPE RepeatedPrimitiveTypeTraits<TYPE>::Get( \
|
|
int number, const ExtensionSet& set, int index) { \
|
|
return set.GetRepeated##METHOD(number, index); \
|
|
} \
|
|
template<> inline void RepeatedPrimitiveTypeTraits<TYPE>::Set( \
|
|
int number, int index, TYPE value, ExtensionSet* set) { \
|
|
set->SetRepeated##METHOD(number, index, value); \
|
|
} \
|
|
template<> inline void RepeatedPrimitiveTypeTraits<TYPE>::Add( \
|
|
int number, FieldType field_type, bool is_packed, \
|
|
TYPE value, ExtensionSet* set) { \
|
|
set->Add##METHOD(number, field_type, is_packed, value, NULL); \
|
|
}
|
|
|
|
PROTOBUF_DEFINE_PRIMITIVE_TYPE( int32, Int32)
|
|
PROTOBUF_DEFINE_PRIMITIVE_TYPE( int64, Int64)
|
|
PROTOBUF_DEFINE_PRIMITIVE_TYPE(uint32, UInt32)
|
|
PROTOBUF_DEFINE_PRIMITIVE_TYPE(uint64, UInt64)
|
|
PROTOBUF_DEFINE_PRIMITIVE_TYPE( float, Float)
|
|
PROTOBUF_DEFINE_PRIMITIVE_TYPE(double, Double)
|
|
PROTOBUF_DEFINE_PRIMITIVE_TYPE( bool, Bool)
|
|
|
|
#undef PROTOBUF_DEFINE_PRIMITIVE_TYPE
|
|
|
|
// -------------------------------------------------------------------
|
|
// StringTypeTraits
|
|
|
|
// Strings support both Set() and Mutable().
|
|
class LIBPROTOBUF_EXPORT StringTypeTraits {
|
|
public:
|
|
typedef const string& ConstType;
|
|
typedef string* MutableType;
|
|
|
|
static inline const string& Get(int number, const ExtensionSet& set,
|
|
ConstType default_value) {
|
|
return set.GetString(number, default_value);
|
|
}
|
|
static inline void Set(int number, FieldType field_type,
|
|
const string& value, ExtensionSet* set) {
|
|
set->SetString(number, field_type, value, NULL);
|
|
}
|
|
static inline string* Mutable(int number, FieldType field_type,
|
|
ExtensionSet* set) {
|
|
return set->MutableString(number, field_type, NULL);
|
|
}
|
|
};
|
|
|
|
class LIBPROTOBUF_EXPORT RepeatedStringTypeTraits {
|
|
public:
|
|
typedef const string& ConstType;
|
|
typedef string* MutableType;
|
|
|
|
static inline const string& Get(int number, const ExtensionSet& set,
|
|
int index) {
|
|
return set.GetRepeatedString(number, index);
|
|
}
|
|
static inline void Set(int number, int index,
|
|
const string& value, ExtensionSet* set) {
|
|
set->SetRepeatedString(number, index, value);
|
|
}
|
|
static inline string* Mutable(int number, int index, ExtensionSet* set) {
|
|
return set->MutableRepeatedString(number, index);
|
|
}
|
|
static inline void Add(int number, FieldType field_type,
|
|
bool /*is_packed*/, const string& value,
|
|
ExtensionSet* set) {
|
|
set->AddString(number, field_type, value, NULL);
|
|
}
|
|
static inline string* Add(int number, FieldType field_type,
|
|
ExtensionSet* set) {
|
|
return set->AddString(number, field_type, NULL);
|
|
}
|
|
};
|
|
|
|
// -------------------------------------------------------------------
|
|
// EnumTypeTraits
|
|
|
|
// ExtensionSet represents enums using integers internally, so we have to
|
|
// static_cast around.
|
|
template <typename Type, bool IsValid(int)>
|
|
class EnumTypeTraits {
|
|
public:
|
|
typedef Type ConstType;
|
|
|
|
static inline ConstType Get(int number, const ExtensionSet& set,
|
|
ConstType default_value) {
|
|
return static_cast<Type>(set.GetEnum(number, default_value));
|
|
}
|
|
static inline void Set(int number, FieldType field_type,
|
|
ConstType value, ExtensionSet* set) {
|
|
GOOGLE_DCHECK(IsValid(value));
|
|
set->SetEnum(number, field_type, value, NULL);
|
|
}
|
|
};
|
|
|
|
template <typename Type, bool IsValid(int)>
|
|
class RepeatedEnumTypeTraits {
|
|
public:
|
|
typedef Type ConstType;
|
|
|
|
static inline ConstType Get(int number, const ExtensionSet& set, int index) {
|
|
return static_cast<Type>(set.GetRepeatedEnum(number, index));
|
|
}
|
|
static inline void Set(int number, int index,
|
|
ConstType value, ExtensionSet* set) {
|
|
GOOGLE_DCHECK(IsValid(value));
|
|
set->SetRepeatedEnum(number, index, value);
|
|
}
|
|
static inline void Add(int number, FieldType field_type,
|
|
bool is_packed, ConstType value, ExtensionSet* set) {
|
|
GOOGLE_DCHECK(IsValid(value));
|
|
set->AddEnum(number, field_type, is_packed, value, NULL);
|
|
}
|
|
};
|
|
|
|
// -------------------------------------------------------------------
|
|
// MessageTypeTraits
|
|
|
|
// ExtensionSet guarantees that when manipulating extensions with message
|
|
// types, the implementation used will be the compiled-in class representing
|
|
// that type. So, we can static_cast down to the exact type we expect.
|
|
template <typename Type>
|
|
class MessageTypeTraits {
|
|
public:
|
|
typedef const Type& ConstType;
|
|
typedef Type* MutableType;
|
|
|
|
static inline ConstType Get(int number, const ExtensionSet& set,
|
|
ConstType default_value) {
|
|
return static_cast<const Type&>(
|
|
set.GetMessage(number, default_value));
|
|
}
|
|
static inline MutableType Mutable(int number, FieldType field_type,
|
|
ExtensionSet* set) {
|
|
return static_cast<Type*>(
|
|
set->MutableMessage(number, field_type, Type::default_instance(), NULL));
|
|
}
|
|
};
|
|
|
|
template <typename Type>
|
|
class RepeatedMessageTypeTraits {
|
|
public:
|
|
typedef const Type& ConstType;
|
|
typedef Type* MutableType;
|
|
|
|
static inline ConstType Get(int number, const ExtensionSet& set, int index) {
|
|
return static_cast<const Type&>(set.GetRepeatedMessage(number, index));
|
|
}
|
|
static inline MutableType Mutable(int number, int index, ExtensionSet* set) {
|
|
return static_cast<Type*>(set->MutableRepeatedMessage(number, index));
|
|
}
|
|
static inline MutableType Add(int number, FieldType field_type,
|
|
ExtensionSet* set) {
|
|
return static_cast<Type*>(
|
|
set->AddMessage(number, field_type, Type::default_instance(), NULL));
|
|
}
|
|
};
|
|
|
|
// -------------------------------------------------------------------
|
|
// ExtensionIdentifier
|
|
|
|
// This is the type of actual extension objects. E.g. if you have:
|
|
// extends Foo with optional int32 bar = 1234;
|
|
// then "bar" will be defined in C++ as:
|
|
// ExtensionIdentifier<Foo, PrimitiveTypeTraits<int32>, 1, false> bar(1234);
|
|
//
|
|
// Note that we could, in theory, supply the field number as a template
|
|
// parameter, and thus make an instance of ExtensionIdentifier have no
|
|
// actual contents. However, if we did that, then using at extension
|
|
// identifier would not necessarily cause the compiler to output any sort
|
|
// of reference to any simple defined in the extension's .pb.o file. Some
|
|
// linkers will actually drop object files that are not explicitly referenced,
|
|
// but that would be bad because it would cause this extension to not be
|
|
// registered at static initialization, and therefore using it would crash.
|
|
|
|
template <typename ExtendeeType, typename TypeTraitsType,
|
|
FieldType field_type, bool is_packed>
|
|
class ExtensionIdentifier {
|
|
public:
|
|
typedef TypeTraitsType TypeTraits;
|
|
typedef ExtendeeType Extendee;
|
|
|
|
ExtensionIdentifier(int number, typename TypeTraits::ConstType default_value)
|
|
: number_(number), default_value_(default_value) {}
|
|
inline int number() const { return number_; }
|
|
typename TypeTraits::ConstType default_value() const {
|
|
return default_value_;
|
|
}
|
|
|
|
private:
|
|
const int number_;
|
|
typename TypeTraits::ConstType default_value_;
|
|
};
|
|
|
|
// -------------------------------------------------------------------
|
|
// Generated accessors
|
|
|
|
// This macro should be expanded in the context of a generated type which
|
|
// has extensions.
|
|
//
|
|
// We use "_proto_TypeTraits" as a type name below because "TypeTraits"
|
|
// causes problems if the class has a nested message or enum type with that
|
|
// name and "_TypeTraits" is technically reserved for the C++ library since
|
|
// it starts with an underscore followed by a capital letter.
|
|
#define GOOGLE_PROTOBUF_EXTENSION_ACCESSORS(CLASSNAME) \
|
|
/* Has, Size, Clear */ \
|
|
template <typename _proto_TypeTraits, \
|
|
::google::protobuf::internal::FieldType field_type, \
|
|
bool is_packed> \
|
|
inline bool HasExtension( \
|
|
const ::google::protobuf::internal::ExtensionIdentifier< \
|
|
CLASSNAME, _proto_TypeTraits, field_type, is_packed>& id) const { \
|
|
return _extensions_.Has(id.number()); \
|
|
} \
|
|
\
|
|
template <typename _proto_TypeTraits, \
|
|
::google::protobuf::internal::FieldType field_type, \
|
|
bool is_packed> \
|
|
inline void ClearExtension( \
|
|
const ::google::protobuf::internal::ExtensionIdentifier< \
|
|
CLASSNAME, _proto_TypeTraits, field_type, is_packed>& id) { \
|
|
_extensions_.ClearExtension(id.number()); \
|
|
} \
|
|
\
|
|
template <typename _proto_TypeTraits, \
|
|
::google::protobuf::internal::FieldType field_type, \
|
|
bool is_packed> \
|
|
inline int ExtensionSize( \
|
|
const ::google::protobuf::internal::ExtensionIdentifier< \
|
|
CLASSNAME, _proto_TypeTraits, field_type, is_packed>& id) const { \
|
|
return _extensions_.ExtensionSize(id.number()); \
|
|
} \
|
|
\
|
|
/* Singular accessors */ \
|
|
template <typename _proto_TypeTraits, \
|
|
::google::protobuf::internal::FieldType field_type, \
|
|
bool is_packed> \
|
|
inline typename _proto_TypeTraits::ConstType GetExtension( \
|
|
const ::google::protobuf::internal::ExtensionIdentifier< \
|
|
CLASSNAME, _proto_TypeTraits, field_type, is_packed>& id) const { \
|
|
return _proto_TypeTraits::Get(id.number(), _extensions_, \
|
|
id.default_value()); \
|
|
} \
|
|
\
|
|
template <typename _proto_TypeTraits, \
|
|
::google::protobuf::internal::FieldType field_type, \
|
|
bool is_packed> \
|
|
inline typename _proto_TypeTraits::MutableType MutableExtension( \
|
|
const ::google::protobuf::internal::ExtensionIdentifier< \
|
|
CLASSNAME, _proto_TypeTraits, field_type, is_packed>& id) { \
|
|
return _proto_TypeTraits::Mutable(id.number(), field_type, &_extensions_);\
|
|
} \
|
|
\
|
|
template <typename _proto_TypeTraits, \
|
|
::google::protobuf::internal::FieldType field_type, \
|
|
bool is_packed> \
|
|
inline void SetExtension( \
|
|
const ::google::protobuf::internal::ExtensionIdentifier< \
|
|
CLASSNAME, _proto_TypeTraits, field_type, is_packed>& id, \
|
|
typename _proto_TypeTraits::ConstType value) { \
|
|
_proto_TypeTraits::Set(id.number(), field_type, value, &_extensions_); \
|
|
} \
|
|
\
|
|
/* Repeated accessors */ \
|
|
template <typename _proto_TypeTraits, \
|
|
::google::protobuf::internal::FieldType field_type, \
|
|
bool is_packed> \
|
|
inline typename _proto_TypeTraits::ConstType GetExtension( \
|
|
const ::google::protobuf::internal::ExtensionIdentifier< \
|
|
CLASSNAME, _proto_TypeTraits, field_type, is_packed>& id, \
|
|
int index) const { \
|
|
return _proto_TypeTraits::Get(id.number(), _extensions_, index); \
|
|
} \
|
|
\
|
|
template <typename _proto_TypeTraits, \
|
|
::google::protobuf::internal::FieldType field_type, \
|
|
bool is_packed> \
|
|
inline typename _proto_TypeTraits::MutableType MutableExtension( \
|
|
const ::google::protobuf::internal::ExtensionIdentifier< \
|
|
CLASSNAME, _proto_TypeTraits, field_type, is_packed>& id, \
|
|
int index) { \
|
|
return _proto_TypeTraits::Mutable(id.number(), index, &_extensions_); \
|
|
} \
|
|
\
|
|
template <typename _proto_TypeTraits, \
|
|
::google::protobuf::internal::FieldType field_type, \
|
|
bool is_packed> \
|
|
inline void SetExtension( \
|
|
const ::google::protobuf::internal::ExtensionIdentifier< \
|
|
CLASSNAME, _proto_TypeTraits, field_type, is_packed>& id, \
|
|
int index, typename _proto_TypeTraits::ConstType value) { \
|
|
_proto_TypeTraits::Set(id.number(), index, value, &_extensions_); \
|
|
} \
|
|
\
|
|
template <typename _proto_TypeTraits, \
|
|
::google::protobuf::internal::FieldType field_type, \
|
|
bool is_packed> \
|
|
inline typename _proto_TypeTraits::MutableType AddExtension( \
|
|
const ::google::protobuf::internal::ExtensionIdentifier< \
|
|
CLASSNAME, _proto_TypeTraits, field_type, is_packed>& id) { \
|
|
return _proto_TypeTraits::Add(id.number(), field_type, &_extensions_); \
|
|
} \
|
|
\
|
|
template <typename _proto_TypeTraits, \
|
|
::google::protobuf::internal::FieldType field_type, \
|
|
bool is_packed> \
|
|
inline void AddExtension( \
|
|
const ::google::protobuf::internal::ExtensionIdentifier< \
|
|
CLASSNAME, _proto_TypeTraits, field_type, is_packed>& id, \
|
|
typename _proto_TypeTraits::ConstType value) { \
|
|
_proto_TypeTraits::Add(id.number(), field_type, is_packed, \
|
|
value, &_extensions_); \
|
|
}
|
|
|
|
} // namespace internal
|
|
} // namespace protobuf
|
|
|
|
} // namespace google
|
|
#endif // GOOGLE_PROTOBUF_EXTENSION_SET_H__
|