dfhack/plugins/autochop.cpp

950 lines
34 KiB
C++

// automatically chop trees
#include "Debug.h"
#include "LuaTools.h"
#include "PluginManager.h"
#include "TileTypes.h"
#include "modules/Burrows.h"
#include "modules/Designations.h"
#include "modules/Items.h"
#include "modules/Maps.h"
#include "modules/Persistence.h"
#include "modules/Units.h"
#include "modules/World.h"
#include "df/burrow.h"
#include "df/item.h"
#include "df/map_block.h"
#include "df/plant.h"
#include "df/plant_tree_info.h"
#include "df/plant_tree_tile.h"
#include "df/plotinfost.h"
#include "df/world.h"
#include <map>
#include <unordered_map>
using std::map;
using std::multimap;
using std::pair;
using std::string;
using std::unordered_map;
using std::vector;
using namespace DFHack;
using namespace df::enums;
DFHACK_PLUGIN("autochop");
DFHACK_PLUGIN_IS_ENABLED(is_enabled);
REQUIRE_GLOBAL(world);
REQUIRE_GLOBAL(plotinfo);
namespace DFHack {
// for configuration-related logging
DBG_DECLARE(autochop, status, DebugCategory::LINFO);
// for logging during the periodic scan
DBG_DECLARE(autochop, cycle, DebugCategory::LINFO);
}
static const string CONFIG_KEY = string(plugin_name) + "/config";
static const string BURROW_CONFIG_KEY_PREFIX = string(plugin_name) + "/burrow/";
static PersistentDataItem config;
static vector<PersistentDataItem> watched_burrows;
static unordered_map<int, size_t> watched_burrows_indices;
enum ConfigValues {
CONFIG_IS_ENABLED = 0,
CONFIG_MAX_LOGS = 1,
CONFIG_MIN_LOGS = 2,
CONFIG_WAITING_FOR_MIN = 3,
};
enum BurrowConfigValues {
BURROW_CONFIG_ID = 0,
BURROW_CONFIG_CHOP = 1,
BURROW_CONFIG_CLEARCUT = 2,
BURROW_CONFIG_PROTECT_BREWABLE = 3,
BURROW_CONFIG_PROTECT_EDIBLE = 4,
BURROW_CONFIG_PROTECT_COOKABLE = 5,
};
static int get_config_val(PersistentDataItem &c, int index) {
if (!c.isValid())
return -1;
return c.ival(index);
}
static bool get_config_bool(PersistentDataItem &c, int index) {
return get_config_val(c, index) == 1;
}
static void set_config_val(PersistentDataItem &c, int index, int value) {
if (c.isValid())
c.ival(index) = value;
}
static void set_config_bool(PersistentDataItem &c, int index, bool value) {
set_config_val(c, index, value ? 1 : 0);
}
static PersistentDataItem & ensure_burrow_config(color_ostream &out, int id) {
if (watched_burrows_indices.count(id))
return watched_burrows[watched_burrows_indices[id]];
string keyname = BURROW_CONFIG_KEY_PREFIX + int_to_string(id);
DEBUG(status,out).print("creating new persistent key for burrow %d\n", id);
watched_burrows.emplace_back(World::GetPersistentData(keyname, NULL));
size_t idx = watched_burrows.size()-1;
watched_burrows_indices.emplace(id, idx);
return watched_burrows[idx];
}
static void remove_burrow_config(color_ostream &out, int id) {
if (!watched_burrows_indices.count(id))
return;
DEBUG(status,out).print("removing persistent key for burrow %d\n", id);
size_t idx = watched_burrows_indices[id];
World::DeletePersistentData(watched_burrows[idx]);
watched_burrows.erase(watched_burrows.begin()+idx);
watched_burrows_indices.erase(id);
}
static void validate_burrow_configs(color_ostream &out) {
for (int32_t idx = watched_burrows.size()-1; idx >=0; --idx) {
int id = get_config_val(watched_burrows[idx], BURROW_CONFIG_ID);
if (!df::burrow::find(id)) {
remove_burrow_config(out, id);
}
}
}
static const int32_t CYCLE_TICKS = 1200;
static int32_t cycle_timestamp = 0; // world->frame_counter at last cycle
static command_result do_command(color_ostream &out, vector<string> &parameters);
static int32_t do_cycle(color_ostream &out, bool force_designate = false);
DFhackCExport command_result plugin_init(color_ostream &out, std::vector <PluginCommand> &commands) {
DEBUG(status,out).print("initializing %s\n", plugin_name);
// provide a configuration interface for the plugin
commands.push_back(PluginCommand(
plugin_name,
"Auto-harvest trees when low on stockpiled logs.",
do_command));
return CR_OK;
}
DFhackCExport command_result plugin_enable(color_ostream &out, bool enable) {
if (!Core::getInstance().isWorldLoaded()) {
out.printerr("Cannot enable %s without a loaded world.\n", plugin_name);
return CR_FAILURE;
}
if (enable != is_enabled) {
is_enabled = enable;
DEBUG(status,out).print("%s from the API; persisting\n",
is_enabled ? "enabled" : "disabled");
set_config_bool(config, CONFIG_IS_ENABLED, is_enabled);
if (enable)
do_cycle(out, true);
} else {
DEBUG(status,out).print("%s from the API, but already %s; no action\n",
is_enabled ? "enabled" : "disabled",
is_enabled ? "enabled" : "disabled");
}
return CR_OK;
}
DFhackCExport command_result plugin_shutdown (color_ostream &out) {
DEBUG(status,out).print("shutting down %s\n", plugin_name);
return CR_OK;
}
DFhackCExport command_result plugin_load_data (color_ostream &out) {
cycle_timestamp = 0;
config = World::GetPersistentData(CONFIG_KEY);
if (!config.isValid()) {
DEBUG(status,out).print("no config found in this save; initializing\n");
config = World::AddPersistentData(CONFIG_KEY);
set_config_bool(config, CONFIG_IS_ENABLED, is_enabled);
set_config_val(config, CONFIG_MAX_LOGS, 200);
set_config_val(config, CONFIG_MIN_LOGS, 160);
set_config_bool(config, CONFIG_WAITING_FOR_MIN, false);
}
// we have to copy our enabled flag into the global plugin variable, but
// all the other state we can directly read/modify from the persistent
// data structure.
is_enabled = get_config_bool(config, CONFIG_IS_ENABLED);
DEBUG(status,out).print("loading persisted enabled state: %s\n",
is_enabled ? "true" : "false");
World::GetPersistentData(&watched_burrows, BURROW_CONFIG_KEY_PREFIX, true);
watched_burrows_indices.clear();
const size_t num_watched_burrows = watched_burrows.size();
for (size_t idx = 0; idx < num_watched_burrows; ++idx) {
auto &c = watched_burrows[idx];
watched_burrows_indices.emplace(get_config_val(c, BURROW_CONFIG_ID), idx);
}
validate_burrow_configs(out);
return CR_OK;
}
DFhackCExport command_result plugin_onstatechange(color_ostream &out, state_change_event event) {
if (event == DFHack::SC_WORLD_UNLOADED) {
if (is_enabled) {
DEBUG(status,out).print("world unloaded; disabling %s\n",
plugin_name);
is_enabled = false;
}
}
return CR_OK;
}
DFhackCExport command_result plugin_onupdate(color_ostream &out) {
if (is_enabled && world->frame_counter - cycle_timestamp >= CYCLE_TICKS) {
int32_t designated = do_cycle(out);
if (0 < designated)
out.print("autochop: designated %d tree(s) for chopping\n", designated);
}
return CR_OK;
}
static bool call_autochop_lua(color_ostream *out, const char *fn_name,
int nargs = 0, int nres = 0,
Lua::LuaLambda && args_lambda = Lua::DEFAULT_LUA_LAMBDA,
Lua::LuaLambda && res_lambda = Lua::DEFAULT_LUA_LAMBDA) {
DEBUG(status).print("calling autochop lua function: '%s'\n", fn_name);
CoreSuspender guard;
auto L = Lua::Core::State;
Lua::StackUnwinder top(L);
if (!out)
out = &Core::getInstance().getConsole();
return Lua::CallLuaModuleFunction(*out, L, "plugins.autochop", fn_name,
nargs, nres,
std::forward<Lua::LuaLambda&&>(args_lambda),
std::forward<Lua::LuaLambda&&>(res_lambda));
}
static command_result do_command(color_ostream &out, vector<string> &parameters) {
CoreSuspender suspend;
if (!Core::getInstance().isWorldLoaded()) {
out.printerr("Cannot run %s without a loaded world.\n", plugin_name);
return CR_FAILURE;
}
bool show_help = false;
if (!call_autochop_lua(&out, "parse_commandline", parameters.size(), 1,
[&](lua_State *L) {
for (const string &param : parameters)
Lua::Push(L, param);
},
[&](lua_State *L) {
show_help = !lua_toboolean(L, -1);
})) {
return CR_FAILURE;
}
return show_help ? CR_WRONG_USAGE : CR_OK;
}
/////////////////////////////////////////////////////
// cycle logic
//
static bool is_accessible_item(df::item *item, const vector<df::unit *> &citizens) {
const df::coord pos = Items::getPosition(item);
for (auto &unit : citizens) {
if (Maps::canWalkBetween(Units::getPosition(unit), pos))
return true;
}
return false;
}
// at least one member of the fort can reach a position adjacent to the given pos
static bool is_accessible_tree(const df::coord &pos, const vector<df::unit *> &citizens) {
for (auto &unit : citizens) {
if (Maps::canWalkBetween(unit->pos, df::coord(pos.x-1, pos.y-1, pos.z))
|| Maps::canWalkBetween(unit->pos, df::coord(pos.x, pos.y-1, pos.z))
|| Maps::canWalkBetween(unit->pos, df::coord(pos.x+1, pos.y-1, pos.z))
|| Maps::canWalkBetween(unit->pos, df::coord(pos.x-1, pos.y, pos.z))
|| Maps::canWalkBetween(unit->pos, df::coord(pos.x+1, pos.y, pos.z))
|| Maps::canWalkBetween(unit->pos, df::coord(pos.x-1, pos.y+1, pos.z))
|| Maps::canWalkBetween(unit->pos, df::coord(pos.x, pos.y+1, pos.z))
|| Maps::canWalkBetween(unit->pos, df::coord(pos.x+1, pos.y+1, pos.z)))
return true;
}
return false;
}
static bool is_valid_tree(const df::plant *plant) {
// Skip all non-trees immediately.
if (plant->flags.bits.is_shrub)
return false;
// Skip plants with invalid tile.
df::map_block *block = Maps::getTileBlock(plant->pos);
if (!block)
return false;
int x = plant->pos.x % 16;
int y = plant->pos.y % 16;
// Skip all unrevealed plants.
if (block->designation[x][y].bits.hidden)
return false;
if (tileMaterial(block->tiletype[x][y]) != tiletype_material::TREE)
return false;
return true;
}
static bool is_protected(const df::plant * plant, PersistentDataItem &c) {
const df::plant_raw *plant_raw = df::plant_raw::find(plant->material);
bool protect_brewable = get_config_bool(c, BURROW_CONFIG_PROTECT_BREWABLE);
bool protect_edible = get_config_bool(c, BURROW_CONFIG_PROTECT_EDIBLE);
bool protect_cookable = get_config_bool(c, BURROW_CONFIG_PROTECT_COOKABLE);
if (protect_brewable && plant_raw->material_defs.type[plant_material_def::drink] != -1)
return true;
if (protect_edible || protect_cookable) {
for (df::material * mat : plant_raw->material) {
if (protect_edible && mat->flags.is_set(material_flags::EDIBLE_RAW))
return true;
if (protect_cookable && mat->flags.is_set(material_flags::EDIBLE_COOKED))
return true;
}
}
return false;
}
static int32_t estimate_logs(const df::plant *plant) {
if (!plant->tree_info)
return 0;
//adapted from code by aljohnston112 @ github
df::plant_tree_tile** tiles = plant->tree_info->body;
if (!tiles)
return 0;
int32_t trunks = 0;
const int32_t area = plant->tree_info->dim_y * plant->tree_info->dim_x;
for (int i = 0; i < plant->tree_info->body_height; i++) {
df::plant_tree_tile* tilesRow = tiles[i];
if (!tilesRow)
return 0; // tree data is corrupt; let's not touch it
for (int j = 0; j < area; j++)
trunks += tilesRow[j].bits.trunk;
}
return trunks;
}
static void bucket_tree(df::plant *plant, bool designate_clearcut, bool *designated, bool *can_chop,
map<int32_t, int32_t> *tree_counts, map<int32_t, int32_t> *designated_tree_counts,
map<int, PersistentDataItem *> &clearcut_burrows,
map<int, PersistentDataItem *> &chop_burrows) {
for (auto &burrow : plotinfo->burrows.list) {
if (!Burrows::isAssignedTile(burrow, plant->pos))
continue;
int id = burrow->id;
if (tree_counts)
++(*tree_counts)[id];
if (*designated) {
if (designated_tree_counts)
++(*designated_tree_counts)[id];
} else if (clearcut_burrows.count(id) && !is_protected(plant, *clearcut_burrows[id])) {
if (designate_clearcut && Designations::markPlant(plant)) {
*designated = true;
if (designated_tree_counts)
++(*designated_tree_counts)[id];
}
} else if (chop_burrows.count(id) && !is_protected(plant, *chop_burrows[id])) {
*can_chop = true;
}
}
if (!*designated && chop_burrows.empty())
*can_chop = true;
}
static void bucket_watched_burrows(color_ostream & out,
map<int, PersistentDataItem *> &clearcut_burrows,
map<int, PersistentDataItem *> &chop_burrows) {
for (auto &c : watched_burrows) {
int id = get_config_val(c, BURROW_CONFIG_ID);
if (get_config_bool(c, BURROW_CONFIG_CLEARCUT))
clearcut_burrows.emplace(id, &c);
else if (get_config_bool(c, BURROW_CONFIG_CHOP))
chop_burrows.emplace(id, &c);
}
}
typedef multimap<int, df::plant *, std::greater<int>> TreesBySize;
static int32_t scan_tree(color_ostream & out, df::plant *plant, int32_t *expected_yield,
TreesBySize *designatable_trees_by_size, bool designate_clearcut,
const vector<df::unit *> &citizens, int32_t *accessible_trees,
int32_t *inaccessible_trees, int32_t *designated_trees, int32_t *accessible_yield,
map<int32_t, int32_t> *tree_counts,
map<int32_t, int32_t> *designated_tree_counts,
map<int, PersistentDataItem *> &clearcut_burrows,
map<int, PersistentDataItem *> &chop_burrows) {
TRACE(cycle,out).print(" scanning tree at %d,%d,%d\n",
plant->pos.x, plant->pos.y, plant->pos.z);
if (!is_valid_tree(plant))
return 0;
bool accessible = is_accessible_tree(plant->pos, citizens);
int32_t yield = estimate_logs(plant);
if (accessible) {
if (accessible_trees)
++*accessible_trees;
if (accessible_yield)
*accessible_yield += yield;
} else {
if (inaccessible_trees)
++*inaccessible_trees;
}
bool can_chop = false;
bool designated = Designations::isPlantMarked(plant);
bool was_designated = designated;
bucket_tree(plant, designate_clearcut, &designated, &can_chop, tree_counts,
designated_tree_counts, clearcut_burrows, chop_burrows);
int32_t ret = 0;
if (designated) {
if (!was_designated)
ret = 1;
if (designated_trees)
++*designated_trees;
if (expected_yield)
*expected_yield += yield;
} else if (can_chop && accessible) {
if (designatable_trees_by_size)
designatable_trees_by_size->emplace(yield, plant);
}
return ret;
}
// returns the number of trees that were newly marked
static int32_t scan_trees(color_ostream & out, int32_t *expected_yield,
TreesBySize *designatable_trees_by_size, bool designate_clearcut,
const vector<df::unit *> &citizens, int32_t *accessible_trees = NULL,
int32_t *inaccessible_trees = NULL, int32_t *designated_trees = NULL,
int32_t *accessible_yield = NULL,
map<int32_t, int32_t> *tree_counts = NULL,
map<int32_t, int32_t> *designated_tree_counts = NULL) {
TRACE(cycle,out).print("scanning trees\n");
int32_t newly_marked = 0;
if (accessible_trees)
*accessible_trees = 0;
if (inaccessible_trees)
*inaccessible_trees = 0;
if (designated_trees)
*designated_trees = 0;
if (expected_yield)
*expected_yield = 0;
if (accessible_yield)
*accessible_yield = 0;
if (tree_counts)
tree_counts->clear();
if (designated_tree_counts)
designated_tree_counts->clear();
map<int, PersistentDataItem *> clearcut_burrows, chop_burrows;
bucket_watched_burrows(out, clearcut_burrows, chop_burrows);
for (auto plant : world->plants.tree_dry)
newly_marked += scan_tree(out, plant, expected_yield, designatable_trees_by_size,
designate_clearcut, citizens, accessible_trees,
inaccessible_trees, designated_trees, accessible_yield,
tree_counts, designated_tree_counts,
clearcut_burrows, chop_burrows);
for (auto plant : world->plants.tree_wet)
newly_marked += scan_tree(out, plant, expected_yield, designatable_trees_by_size,
designate_clearcut, citizens, accessible_trees,
inaccessible_trees, designated_trees, accessible_yield,
tree_counts, designated_tree_counts,
clearcut_burrows, chop_burrows);
return newly_marked;
}
// TODO: does this actually catch anything above the bad_flag check?
static bool is_valid_item(df::item *item) {
for (size_t i = 0; i < item->general_refs.size(); i++) {
df::general_ref *ref = item->general_refs[i];
switch (ref->getType()) {
case general_ref_type::CONTAINED_IN_ITEM:
return false;
case general_ref_type::UNIT_HOLDER:
return false;
case general_ref_type::BUILDING_HOLDER:
return false;
default:
break;
}
}
for (size_t i = 0; i < item->specific_refs.size(); i++) {
df::specific_ref *ref = item->specific_refs[i];
if (ref->type == specific_ref_type::JOB) {
// Ignore any items assigned to a job
return false;
}
}
return true;
}
struct BadFlags
{
uint32_t whole;
BadFlags()
{
df::item_flags flags;
#define F(x) flags.bits.x = true;
F(dump); F(forbid); F(garbage_collect);
F(hostile); F(on_fire); F(rotten); F(trader);
F(in_building); F(construction); F(artifact);
F(in_job); F(owned); F(in_chest); F(removed);
F(encased); F(spider_web);
#undef F
whole = flags.whole;
}
};
static void scan_logs(color_ostream &out, int32_t *usable_logs,
const vector<df::unit *> &citizens, int32_t *inaccessible_logs = NULL) {
static const BadFlags bad_flags;
TRACE(cycle,out).print("scanning logs\n");
if (usable_logs)
*usable_logs = 0;
if (inaccessible_logs)
*inaccessible_logs = 0;
for (auto &item : world->items.other[items_other_id::IN_PLAY]) {
TRACE(cycle,out).print(" scanning log %d\n", item->id);
if (item->flags.whole & bad_flags.whole)
continue;
if (item->getType() != item_type::WOOD)
continue;
if (!is_valid_item(item))
continue;
if (!is_accessible_item(item, citizens)) {
if (inaccessible_logs)
++*inaccessible_logs;
} else if (usable_logs) {
++*usable_logs;
}
}
}
static int32_t do_cycle(color_ostream &out, bool force_designate) {
DEBUG(cycle,out).print("running %s cycle\n", plugin_name);
// mark that we have recently run
cycle_timestamp = world->frame_counter;
validate_burrow_configs(out);
// scan trees and clearcut marked burrows
int32_t expected_yield;
TreesBySize designatable_trees_by_size;
vector<df::unit *> citizens;
Units::getCitizens(citizens);
int32_t newly_marked = scan_trees(out, &expected_yield,
&designatable_trees_by_size, true, citizens);
// check how many logs we have already
int32_t usable_logs;
scan_logs(out, &usable_logs, citizens);
if (get_config_bool(config, CONFIG_WAITING_FOR_MIN)
&& usable_logs <= get_config_val(config, CONFIG_MIN_LOGS)) {
DEBUG(cycle,out).print("minimum threshold crossed\n");
set_config_bool(config, CONFIG_WAITING_FOR_MIN, false);
}
else if (!get_config_bool(config, CONFIG_WAITING_FOR_MIN)
&& usable_logs > get_config_val(config, CONFIG_MAX_LOGS)) {
DEBUG(cycle,out).print("maximum threshold crossed\n");
set_config_bool(config, CONFIG_WAITING_FOR_MIN, true);
}
// if we already have designated enough, we're done
int32_t limit = force_designate || !get_config_bool(config, CONFIG_WAITING_FOR_MIN) ?
get_config_val(config, CONFIG_MAX_LOGS) :
get_config_val(config, CONFIG_MIN_LOGS);
if (usable_logs + expected_yield > limit) {
return newly_marked;
}
// designate until the expected yield gets us to our target or we run out
// of accessible trees
int32_t needed = get_config_val(config, CONFIG_MAX_LOGS) -
(usable_logs + expected_yield);
DEBUG(cycle,out).print("needed logs for this cycle: %d\n", needed);
for (auto & entry : designatable_trees_by_size) {
if (!Designations::markPlant(entry.second))
continue;
++newly_marked;
needed -= entry.first;
if (needed <= 0) {
return newly_marked;
}
}
out.print("autochop: insufficient accessible trees to reach log target! Still need %d logs!\n",
needed);
return newly_marked;
}
/////////////////////////////////////////////////////
// Lua API
// core will already be suspended when coming in through here
//
static const char * get_protect_str(bool protect_brewable, bool protect_edible, bool protect_cookable) {
if (!protect_brewable && !protect_edible && !protect_cookable)
return " ";
if (!protect_brewable && !protect_edible && protect_cookable)
return " z";
if (!protect_brewable && protect_edible && !protect_cookable)
return " e ";
if (!protect_brewable && protect_edible && protect_cookable)
return " ez";
if (protect_brewable && !protect_edible && !protect_cookable)
return "b ";
if (protect_brewable && !protect_edible && protect_cookable)
return "b z";
if (protect_brewable && protect_edible && !protect_cookable)
return "be ";
if (protect_brewable && protect_edible && protect_cookable)
return "bez";
return "";
}
static void autochop_printStatus(color_ostream &out) {
DEBUG(status,out).print("entering autochop_printStatus\n");
validate_burrow_configs(out);
out.print("autochop is %s\n\n", is_enabled ? "enabled" : "disabled");
out.print(" keeping log counts between %d and %d\n",
get_config_val(config, CONFIG_MIN_LOGS), get_config_val(config, CONFIG_MAX_LOGS));
if (get_config_bool(config, CONFIG_WAITING_FOR_MIN))
out.print(" currently waiting for min threshold to be crossed before designating more trees\n");
else
out.print(" currently designating trees until max threshold is crossed\n");
out.print("\n");
int32_t usable_logs, inaccessible_logs;
int32_t accessible_trees, inaccessible_trees;
int32_t designated_trees, expected_yield, accessible_yield;
map<int32_t, int32_t> tree_counts, designated_tree_counts;
vector<df::unit *> citizens;
Units::getCitizens(citizens);
scan_logs(out, &usable_logs, citizens, &inaccessible_logs);
scan_trees(out, &expected_yield, NULL, false, citizens, &accessible_trees, &inaccessible_trees,
&designated_trees, &accessible_yield, &tree_counts, &designated_tree_counts);
out.print("summary:\n");
out.print(" accessible logs (usable stock): %d\n", usable_logs);
out.print(" inaccessible logs: %d\n", inaccessible_logs);
out.print(" total visible logs: %d\n", usable_logs + inaccessible_logs);
out.print("\n");
out.print(" accessible trees: %d\n", accessible_trees);
out.print(" inaccessible trees: %d\n", inaccessible_trees);
out.print(" total visible trees: %d\n", accessible_trees + inaccessible_trees);
out.print("\n");
out.print(" designated trees: %d\n", designated_trees);
out.print(" expected logs from designated trees: %d\n", expected_yield);
out.print(" expected logs from all accessible trees: %d\n", accessible_yield);
out.print("\n");
out.print(" total trees harvested: %d\n", plotinfo->trees_removed);
out.print("\n");
if (!plotinfo->burrows.list.size()) {
out.print("no burrows defined\n");
return;
}
out.print("\n");
int name_width = 11;
for (auto &burrow : plotinfo->burrows.list) {
name_width = std::max(name_width, (int)burrow->name.size());
}
name_width = -name_width; // left justify
const char *fmt = "%*s %4s %4s %8s %5s %6s %7s\n";
out.print(fmt, name_width, "burrow name", " id ", "chop", "clearcut", "trees", "marked", "protect");
out.print(fmt, name_width, "-----------", "----", "----", "--------", "-----", "------", "-------");
for (auto &burrow : plotinfo->burrows.list) {
bool chop = false;
bool clearcut = false;
bool protect_brewable = false;
bool protect_edible = false;
bool protect_cookable = false;
if (watched_burrows_indices.count(burrow->id)) {
auto &c = watched_burrows[watched_burrows_indices[burrow->id]];
chop = get_config_bool(c, BURROW_CONFIG_CHOP);
clearcut = get_config_bool(c, BURROW_CONFIG_CLEARCUT);
protect_brewable = get_config_bool(c, BURROW_CONFIG_PROTECT_BREWABLE);
protect_edible = get_config_bool(c, BURROW_CONFIG_PROTECT_EDIBLE);
protect_cookable = get_config_bool(c, BURROW_CONFIG_PROTECT_COOKABLE);
}
out.print(fmt, name_width, burrow->name.c_str(), int_to_string(burrow->id).c_str(),
chop ? "[x]" : "[ ]", clearcut ? "[x]" : "[ ]",
int_to_string(tree_counts[burrow->id]).c_str(),
int_to_string(designated_tree_counts[burrow->id]).c_str(),
get_protect_str(protect_brewable, protect_edible, protect_cookable));
}
}
static void autochop_designate(color_ostream &out) {
DEBUG(status,out).print("entering autochop_designate\n");
out.print("designated %d tree(s) for chopping\n", do_cycle(out, true));
}
static void autochop_undesignate(color_ostream &out) {
DEBUG(status,out).print("entering autochop_undesignate\n");
int32_t count = 0;
for (auto plant : world->plants.all) {
if (is_valid_tree(plant) && Designations::unmarkPlant(plant))
++count;
}
out.print("undesignated %d tree(s)\n", count);
}
static void autochop_setTargets(color_ostream &out, int32_t max_logs, int32_t min_logs) {
DEBUG(status,out).print("entering autochop_setTargets\n");
if (max_logs < min_logs || min_logs < 0) {
out.printerr("max and min must be at least 0 and max must be greater than min\n");
return;
}
set_config_val(config, CONFIG_MAX_LOGS, max_logs);
set_config_val(config, CONFIG_MIN_LOGS, min_logs);
// check limits and designate up to the new maximum
autochop_designate(out);
}
static int autochop_getTargets(lua_State *L) {
color_ostream *out = Lua::GetOutput(L);
if (!out)
out = &Core::getInstance().getConsole();
DEBUG(status,*out).print("entering autochop_getTargets\n");
Lua::Push(L, get_config_val(config, CONFIG_MAX_LOGS));
Lua::Push(L, get_config_val(config, CONFIG_MIN_LOGS));
return 2;
}
static int autochop_getLogCounts(lua_State *L) {
color_ostream *out = Lua::GetOutput(L);
if (!out)
out = &Core::getInstance().getConsole();
DEBUG(status,*out).print("entering autochop_getNumLogs\n");
int32_t usable_logs, inaccessible_logs;
vector<df::unit *> citizens;
Units::getCitizens(citizens);
scan_logs(*out, &usable_logs, citizens, &inaccessible_logs);
Lua::Push(L, usable_logs);
Lua::Push(L, inaccessible_logs);
return 2;
}
static void push_burrow_config(lua_State *L, int id, bool chop = false,
bool clearcut = false, bool protect_brewable = false,
bool protect_edible = false, bool protect_cookable = false) {
map<string, int32_t> burrow_config;
burrow_config.emplace("id", id);
burrow_config.emplace("chop", chop);
burrow_config.emplace("clearcut", clearcut);
burrow_config.emplace("protect_brewable", protect_brewable);
burrow_config.emplace("protect_edible", protect_edible);
burrow_config.emplace("protect_cookable", protect_cookable);
Lua::Push(L, burrow_config);
}
static void push_burrow_config(lua_State *L, PersistentDataItem &c) {
push_burrow_config(L, get_config_val(c, BURROW_CONFIG_ID),
get_config_bool(c, BURROW_CONFIG_CHOP),
get_config_bool(c, BURROW_CONFIG_CLEARCUT),
get_config_bool(c, BURROW_CONFIG_PROTECT_BREWABLE),
get_config_bool(c, BURROW_CONFIG_PROTECT_EDIBLE),
get_config_bool(c, BURROW_CONFIG_PROTECT_COOKABLE));
}
static void emplace_bulk_burrow_config(lua_State *L, map<int32_t, map<string, int32_t>> &burrows, int id, bool chop = false,
bool clearcut = false, bool protect_brewable = false,
bool protect_edible = false, bool protect_cookable = false) {
map<string, int32_t> burrow_config;
burrow_config.emplace("id", id);
burrow_config.emplace("chop", chop);
burrow_config.emplace("clearcut", clearcut);
burrow_config.emplace("protect_brewable", protect_brewable);
burrow_config.emplace("protect_edible", protect_edible);
burrow_config.emplace("protect_cookable", protect_cookable);
burrows.emplace(id, burrow_config);
}
static void emplace_bulk_burrow_config(lua_State *L, map<int32_t, map<string, int32_t>> &burrows, PersistentDataItem &c) {
emplace_bulk_burrow_config(L, burrows, get_config_val(c, BURROW_CONFIG_ID),
get_config_bool(c, BURROW_CONFIG_CHOP),
get_config_bool(c, BURROW_CONFIG_CLEARCUT),
get_config_bool(c, BURROW_CONFIG_PROTECT_BREWABLE),
get_config_bool(c, BURROW_CONFIG_PROTECT_EDIBLE),
get_config_bool(c, BURROW_CONFIG_PROTECT_COOKABLE));
}
static int autochop_getTreeCountsAndBurrowConfigs(lua_State *L) {
color_ostream *out = Lua::GetOutput(L);
if (!out)
out = &Core::getInstance().getConsole();
DEBUG(status,*out).print("entering autochop_getTreeCountsAndBurrowConfigs\n");
validate_burrow_configs(*out);
int32_t accessible_trees, inaccessible_trees;
int32_t designated_trees, expected_yield, accessible_yield;
map<int32_t, int32_t> tree_counts, designated_tree_counts;
vector<df::unit *> citizens;
Units::getCitizens(citizens);
scan_trees(*out, &expected_yield, NULL, false, citizens, &accessible_trees, &inaccessible_trees,
&designated_trees, &accessible_yield, &tree_counts, &designated_tree_counts);
map<string, int32_t> summary;
map<int32_t, map<string, int32_t>> burrow_config_map;
summary.emplace("accessible_trees", accessible_trees);
summary.emplace("inaccessible_trees", inaccessible_trees);
summary.emplace("designated_trees", designated_trees);
summary.emplace("expected_yield", expected_yield);
summary.emplace("accessible_yield", accessible_yield);
Lua::Push(L, summary);
Lua::Push(L, tree_counts);
Lua::Push(L, designated_tree_counts);
for (auto &burrow : plotinfo->burrows.list) {
int id = burrow->id;
if (watched_burrows_indices.count(id))
emplace_bulk_burrow_config(L, burrow_config_map,
watched_burrows[watched_burrows_indices[id]]);
else
emplace_bulk_burrow_config(L, burrow_config_map, id);
}
Lua::Push(L, burrow_config_map);
return 4;
}
static int autochop_getBurrowConfig(lua_State *L) {
color_ostream *out = Lua::GetOutput(L);
if (!out)
out = &Core::getInstance().getConsole();
DEBUG(status,*out).print("entering autochop_getBurrowConfig\n");
validate_burrow_configs(*out);
// param can be a name or an id
int id;
if (lua_isnumber(L, -1)) {
id = lua_tointeger(L, -1);
if (!df::burrow::find(id))
return 0;
} else {
const char * name = lua_tostring(L, -1);
if (!name)
return 0;
string nameStr = name;
bool found = false;
for (auto &burrow : plotinfo->burrows.list) {
if (nameStr == burrow->name) {
id = burrow->id;
found = true;
break;
}
}
if (!found)
return 0;
}
if (watched_burrows_indices.count(id)) {
push_burrow_config(L, watched_burrows[watched_burrows_indices[id]]);
} else {
push_burrow_config(L, id);
}
return 1;
}
static void autochop_setBurrowConfig(color_ostream &out, int id, bool chop,
bool clearcut, bool protect_brewable, bool protect_edible,
bool protect_cookable) {
DEBUG(status,out).print("entering autochop_setBurrowConfig\n");
validate_burrow_configs(out);
bool isInvalidBurrow = !df::burrow::find(id);
bool hasNoData = !chop && !clearcut && !protect_brewable && !protect_edible
&& !protect_cookable;
if (isInvalidBurrow || hasNoData) {
remove_burrow_config(out, id);
return;
}
PersistentDataItem &c = ensure_burrow_config(out, id);
set_config_val(c, BURROW_CONFIG_ID, id);
set_config_bool(c, BURROW_CONFIG_CHOP, chop);
set_config_bool(c, BURROW_CONFIG_CLEARCUT, clearcut);
set_config_bool(c, BURROW_CONFIG_PROTECT_BREWABLE, protect_brewable);
set_config_bool(c, BURROW_CONFIG_PROTECT_EDIBLE, protect_edible);
set_config_bool(c, BURROW_CONFIG_PROTECT_COOKABLE, protect_cookable);
}
DFHACK_PLUGIN_LUA_FUNCTIONS {
DFHACK_LUA_FUNCTION(autochop_printStatus),
DFHACK_LUA_FUNCTION(autochop_designate),
DFHACK_LUA_FUNCTION(autochop_undesignate),
DFHACK_LUA_FUNCTION(autochop_setTargets),
DFHACK_LUA_FUNCTION(autochop_setBurrowConfig),
DFHACK_LUA_END
};
DFHACK_PLUGIN_LUA_COMMANDS {
DFHACK_LUA_COMMAND(autochop_getTargets),
DFHACK_LUA_COMMAND(autochop_getLogCounts),
DFHACK_LUA_COMMAND(autochop_getBurrowConfig),
DFHACK_LUA_COMMAND(autochop_getTreeCountsAndBurrowConfigs),
DFHACK_LUA_END
};