dfhack/plugins/ruby/ruby-autogen-defs.rb

768 lines
25 KiB
Ruby

# definition of classes used by ruby-autogen
module DFHack
module MemHack
INSPECT_SIZE_LIMIT=16384
class MemStruct
attr_accessor :_memaddr
def _at(addr) ; d = dup ; d._memaddr = addr ; d ; end
def _get ; self ; end
def _cpp_init ; end
end
class Compound < MemStruct
class << self
attr_accessor :_fields, :_rtti_classname, :_sizeof
def field(name, offset)
struct = yield
return if not struct
@_fields ||= []
@_fields << [name, offset, struct]
define_method(name) { struct._at(@_memaddr+offset)._get }
define_method("#{name}=") { |v| struct._at(@_memaddr+offset)._set(v) }
end
def _fields_ancestors
if superclass.respond_to?(:_fields_ancestors)
superclass._fields_ancestors + _fields.to_a
else
_fields.to_a
end
end
def number(bits, signed, initvalue=nil, enum=nil)
Number.new(bits, signed, initvalue, enum)
end
def float
Float.new
end
def bit(shift)
BitField.new(shift, 1)
end
def bits(shift, len, enum=nil)
BitField.new(shift, len, enum)
end
def pointer
Pointer.new((yield if block_given?))
end
def pointer_ary(tglen)
PointerAry.new(tglen, yield)
end
def static_array(len, tglen, indexenum=nil)
StaticArray.new(tglen, len, indexenum, yield)
end
def static_string(len)
StaticString.new(len)
end
def stl_vector(tglen=nil)
tg = yield if tglen
case tglen
when 1; StlVector8.new(tg)
when 2; StlVector16.new(tg)
else StlVector32.new(tg)
end
end
def stl_string
StlString.new
end
def stl_bit_vector
StlBitVector.new
end
def stl_deque(tglen)
StlDeque.new(tglen, yield)
end
def df_flagarray(indexenum=nil)
DfFlagarray.new(indexenum)
end
def df_array(tglen)
DfArray.new(tglen, yield)
end
def df_linked_list
DfLinkedList.new(yield)
end
def global(glob)
Global.new(glob)
end
def compound(name=nil, &b)
m = Class.new(Compound)
DFHack.const_set(name, m) if name
m.class_eval(&b)
m.new
end
def rtti_classname(n)
DFHack.rtti_register(n, self)
@_rtti_classname = n
end
def sizeof(n)
@_sizeof = n
end
# allocate a new c++ object, return its ruby wrapper
def cpp_new(init=nil)
ptr = DFHack.malloc(_sizeof)
if _rtti_classname and vt = DFHack.rtti_getvtable(_rtti_classname)
DFHack.memory_write_int32(ptr, vt)
# TODO call constructor
end
o = new._at(ptr)
o._cpp_init
o._set(init) if init
o
end
end
def _cpp_init
_fields_ancestors.each { |n, o, s| s._at(@_memaddr+o)._cpp_init }
end
def _set(h)
case h
when Hash; h.each { |k, v| send("#{k}=", v) }
when Array; names = _field_names ; raise 'bad size' if names.length != h.length ; names.zip(h).each { |n, a| send("#{n}=", a) }
when Compound; _field_names.each { |n| send("#{n}=", h.send(n)) }
else raise 'wut?'
end
end
def _fields ; self.class._fields.to_a ; end
def _fields_ancestors ; self.class._fields_ancestors.to_a ; end
def _field_names ; _fields_ancestors.map { |n, o, s| n } ; end
def _rtti_classname ; self.class._rtti_classname ; end
def _sizeof ; self.class._sizeof ; end
@@inspecting = {} # avoid infinite recursion on mutually-referenced objects
def inspect
cn = self.class.name.sub(/^DFHack::/, '')
cn << ' @' << ('0x%X' % _memaddr) if cn != ''
out = "#<#{cn}"
return out << ' ...>' if @@inspecting[_memaddr]
@@inspecting[_memaddr] = true
_fields_ancestors.each { |n, o, s|
out << ' ' if out.length != 0 and out[-1, 1] != ' '
if out.length > INSPECT_SIZE_LIMIT
out << '...'
break
end
out << inspect_field(n, o, s)
}
out.chomp!(' ')
@@inspecting.delete _memaddr
out << '>'
end
def inspect_field(n, o, s)
if s.kind_of?(BitField) and s._len == 1
send(n) ? n.to_s : ''
elsif s.kind_of?(Pointer)
"#{n}=#{s._at(@_memaddr+o).inspect}"
elsif n == :_whole
"_whole=0x#{_whole.to_s(16)}"
else
v = send(n).inspect
"#{n}=#{v}"
end
rescue
"#{n}=ERR(#{$!})"
end
end
class Enum
# number -> symbol
def self.enum
# ruby weirdness, needed to make the constants 'virtual'
@enum ||= const_get(:ENUM)
end
# symbol -> number
def self.nume
@nume ||= const_get(:NUME)
end
def self.int(i)
nume[i] || i
end
def self.sym(i)
enum[i] || i
end
end
class Number < MemStruct
attr_accessor :_bits, :_signed, :_initvalue, :_enum
def initialize(bits, signed, initvalue, enum)
@_bits = bits
@_signed = signed
@_initvalue = initvalue
@_enum = enum
end
def _get
v = case @_bits
when 32; DFHack.memory_read_int32(@_memaddr)
when 16; DFHack.memory_read_int16(@_memaddr)
when 8; DFHack.memory_read_int8( @_memaddr)
when 64;(DFHack.memory_read_int32(@_memaddr) & 0xffffffff) + (DFHack.memory_read_int32(@_memaddr+4) << 32)
end
v &= (1 << @_bits) - 1 if not @_signed
v = @_enum.sym(v) if @_enum
v
end
def _set(v)
v = @_enum.int(v) if @_enum
case @_bits
when 32; DFHack.memory_write_int32(@_memaddr, v)
when 16; DFHack.memory_write_int16(@_memaddr, v)
when 8; DFHack.memory_write_int8( @_memaddr, v)
when 64; DFHack.memory_write_int32(@_memaddr, v & 0xffffffff) ; DFHack.memory_write_int32(@memaddr+4, v>>32)
end
end
def _cpp_init
_set(@_initvalue) if @_initvalue
end
end
class Float < MemStruct
def _get
DFHack.memory_read_float(@_memaddr)
end
def _set(v)
DFHack.memory_write_float(@_memaddr, v)
end
def _cpp_init
_set(0.0)
end
end
class BitField < MemStruct
attr_accessor :_shift, :_len, :_enum
def initialize(shift, len, enum=nil)
@_shift = shift
@_len = len
@_enum = enum
end
def _mask
(1 << @_len) - 1
end
def _get
v = DFHack.memory_read_int32(@_memaddr) >> @_shift
if @_len == 1
((v & 1) == 0) ? false : true
else
v &= _mask
v = @_enum.sym(v) if @_enum
v
end
end
def _set(v)
if @_len == 1
# allow 'bit = 0'
v = (v && v != 0 ? 1 : 0)
end
v = @_enum.int(v) if @_enum
v = (v & _mask) << @_shift
ori = DFHack.memory_read_int32(@_memaddr) & 0xffffffff
DFHack.memory_write_int32(@_memaddr, ori - (ori & ((-1 & _mask) << @_shift)) + v)
end
end
class Pointer < MemStruct
attr_accessor :_tg
def initialize(tg)
@_tg = tg
end
def _getp
DFHack.memory_read_int32(@_memaddr) & 0xffffffff
end
def _get
addr = _getp
return if addr == 0
return addr if not @_tg
@_tg._at(addr)._get
end
# XXX shaky...
def _set(v)
if v.kind_of?(Pointer)
DFHack.memory_write_int32(@_memaddr, v._getp)
elsif v.kind_of?(MemStruct)
DFHack.memory_write_int32(@_memaddr, v._memaddr)
else
_get._set(v)
end
end
def inspect
ptr = _getp
if ptr == 0
'NULL'
else
cn = ''
cn = @_tg.class.name.sub(/^DFHack::/, '').sub(/^MemHack::/, '') if @_tg
cn = @_tg._glob if cn == 'Global'
"#<Pointer #{cn} #{'0x%X' % _getp}>"
end
end
end
class PointerAry < MemStruct
attr_accessor :_tglen, :_tg
def initialize(tglen, tg)
@_tglen = tglen
@_tg = tg
end
def _getp(i=0)
delta = (i != 0 ? i*@_tglen : 0)
(DFHack.memory_read_int32(@_memaddr) & 0xffffffff) + delta
end
def _get
addr = _getp
return if addr == 0
self
end
def [](i)
addr = _getp(i)
return if addr == 0
@_tg._at(addr)._get
end
def []=(i, v)
addr = _getp(i)
raise 'null pointer' if addr == 0
@_tg._at(addr)._set(v)
end
def inspect ; ptr = _getp ; (ptr == 0) ? 'NULL' : "#<PointerAry #{'0x%X' % ptr}>" ; end
end
module Enumerable
include ::Enumerable
attr_accessor :_indexenum
def each ; (0...length).each { |i| yield self[i] } ; end
def inspect
out = '['
each_with_index { |e, idx|
out << ', ' if out.length > 1
if out.length > INSPECT_SIZE_LIMIT
out << '...'
break
end
out << "#{_indexenum.sym(idx)}=" if _indexenum
out << e.inspect
}
out << ']'
end
def empty? ; length == 0 ; end
def flatten ; map { |e| e.respond_to?(:flatten) ? e.flatten : e }.flatten ; end
def index(e=nil, &b) ; (0...length).find { |i| b ? b[self[i]] : self[i] == e } ; end
def first ; self[0] ; end
def last ; self[length-1] ; end
end
class StaticArray < MemStruct
attr_accessor :_tglen, :_length, :_indexenum, :_tg
def initialize(tglen, length, indexenum, tg)
@_tglen = tglen
@_length = length
@_indexenum = indexenum
@_tg = tg
end
def _set(a)
a.each_with_index { |v, i| self[i] = v }
end
def _cpp_init
_length.times { |i| _tgat(i)._cpp_init }
end
alias length _length
alias size _length
def _tgat(i)
@_tg._at(@_memaddr + i*@_tglen) if i >= 0 and i < @_length
end
def [](i)
i = _indexenum.int(i) if _indexenum
i += @_length if i < 0
if t = _tgat(i)
t._get
end
end
def []=(i, v)
i = _indexenum.int(i) if _indexenum
i += @_length if i < 0
if t = _tgat(i)
t._set(v)
else
raise 'index out of bounds'
end
end
include Enumerable
end
class StaticString < MemStruct
attr_accessor :_length
def initialize(length)
@_length = length
end
def _get
DFHack.memory_read(@_memaddr, @_length)
end
def _set(v)
DFHack.memory_write(@_memaddr, v[0, @_length])
end
end
class StlVector32 < MemStruct
attr_accessor :_tg
def initialize(tg)
@_tg = tg
end
def length
DFHack.memory_vector32_length(@_memaddr)
end
def size ; length ; end # alias wouldnt work for subclasses
def valueptr_at(idx)
DFHack.memory_vector32_ptrat(@_memaddr, idx)
end
def insert_at(idx, val)
DFHack.memory_vector32_insert(@_memaddr, idx, val)
end
def delete_at(idx)
DFHack.memory_vector32_delete(@_memaddr, idx)
end
def _set(v)
delete_at(length-1) while length > v.length # match lengthes
v.each_with_index { |e, i| self[i] = e } # patch entries
end
def _cpp_init
DFHack.memory_vector_init(@_memaddr)
end
def clear
delete_at(length-1) while length > 0
end
def [](idx)
idx += length if idx < 0
@_tg._at(valueptr_at(idx))._get if idx >= 0 and idx < length
end
def []=(idx, v)
idx += length if idx < 0
if idx >= length
insert_at(idx, 0)
elsif idx < 0
raise 'index out of bounds'
end
@_tg._at(valueptr_at(idx))._set(v)
end
def push(v)
self[length] = v
self
end
def <<(v) ; push(v) ; end
def pop
l = length
if l > 0
v = self[l-1]
delete_at(l-1)
end
v
end
include Enumerable
# do a binary search in an ordered vector for a specific target attribute
# ex: world.history.figures.binsearch(unit.hist_figure_id)
def binsearch(target, field=:id)
o_start = 0
o_end = length - 1
while o_end >= o_start
o_half = o_start + (o_end-o_start)/2
obj = self[o_half]
oval = obj.send(field)
if oval == target
return obj
elsif oval < target
o_start = o_half+1
else
o_end = o_half-1
end
end
end
end
class StlVector16 < StlVector32
def length
DFHack.memory_vector16_length(@_memaddr)
end
def valueptr_at(idx)
DFHack.memory_vector16_ptrat(@_memaddr, idx)
end
def insert_at(idx, val)
DFHack.memory_vector16_insert(@_memaddr, idx, val)
end
def delete_at(idx)
DFHack.memory_vector16_delete(@_memaddr, idx)
end
end
class StlVector8 < StlVector32
def length
DFHack.memory_vector8_length(@_memaddr)
end
def valueptr_at(idx)
DFHack.memory_vector8_ptrat(@_memaddr, idx)
end
def insert_at(idx, val)
DFHack.memory_vector8_insert(@_memaddr, idx, val)
end
def delete_at(idx)
DFHack.memory_vector8_delete(@_memaddr, idx)
end
end
class StlBitVector < StlVector32
def initialize ; end
def length
DFHack.memory_vectorbool_length(@_memaddr)
end
def insert_at(idx, val)
DFHack.memory_vectorbool_insert(@_memaddr, idx, val)
end
def delete_at(idx)
DFHack.memory_vectorbool_delete(@_memaddr, idx)
end
def [](idx)
idx += length if idx < 0
DFHack.memory_vectorbool_at(@_memaddr, idx) if idx >= 0 and idx < length
end
def []=(idx, v)
idx += length if idx < 0
if idx >= length
insert_at(idx, v)
elsif idx < 0
raise 'index out of bounds'
else
DFHack.memory_vectorbool_setat(@_memaddr, idx, v)
end
end
end
class StlString < MemStruct
def _get
DFHack.memory_read_stlstring(@_memaddr)
end
def _set(v)
DFHack.memory_write_stlstring(@_memaddr, v)
end
def _cpp_init
DFHack.memory_stlstring_init(@_memaddr)
end
end
class StlDeque < MemStruct
attr_accessor :_tglen, :_tg
def initialize(tglen, tg)
@_tglen = tglen
@_tg = tg
end
# XXX DF uses stl::deque<some_struct>, so to have a C binding we'd need to single-case every
# possible struct size, like for StlVector. Just ignore it for now, deque are rare enough.
def inspect ; "#<StlDeque>" ; end
end
class DfFlagarray < MemStruct
attr_accessor :_indexenum
def initialize(indexenum)
@_indexenum = indexenum
end
def length
DFHack.memory_bitarray_length(@_memaddr)
end
# TODO _cpp_init
def size ; length ; end
def resize(len)
DFHack.memory_bitarray_resize(@_memaddr, len)
end
def [](idx)
idx = _indexenum.int(idx) if _indexenum
idx += length if idx < 0
DFHack.memory_bitarray_isset(@_memaddr, idx) if idx >= 0 and idx < length
end
def []=(idx, v)
idx = _indexenum.int(idx) if _indexenum
idx += length if idx < 0
if idx >= length or idx < 0
raise 'index out of bounds'
else
DFHack.memory_bitarray_set(@_memaddr, idx, v)
end
end
include Enumerable
end
class DfArray < Compound
attr_accessor :_tglen, :_tg
def initialize(tglen, tg)
@_tglen = tglen
@_tg = tg
end
field(:_ptr, 0) { number 32, false }
field(:_length, 4) { number 16, false }
def length ; _length ; end
def size ; _length ; end
# TODO _cpp_init
def _tgat(i)
@_tg._at(_ptr + i*@_tglen) if i >= 0 and i < _length
end
def [](i)
i += _length if i < 0
if t = _tgat(i)
t._get
end
end
def []=(i, v)
i += _length if i < 0
if t = _tgat(i)
t._set(v)
else
raise 'index out of bounds'
end
end
def _set(a)
a.each_with_index { |v, i| self[i] = v }
end
include Enumerable
end
class DfLinkedList < Compound
attr_accessor :_tg
def initialize(tg)
@_tg = tg
end
field(:_ptr, 0) { number 32, false }
field(:_prev, 4) { number 32, false }
field(:_next, 8) { number 32, false }
def item
# With the current xml structure, currently _tg designate
# the type of the 'next' and 'prev' fields, not 'item'.
# List head has item == NULL, so we can safely return nil.
#addr = _ptr
#return if addr == 0
#@_tg._at(addr)._get
end
def item=(v)
#addr = _ptr
#raise 'null pointer' if addr == 0
#@_tg.at(addr)._set(v)
raise 'null pointer'
end
def prev
addr = _prev
return if addr == 0
@_tg._at(addr)._get
end
def next
addr = _next
return if addr == 0
@_tg._at(addr)._get
end
include Enumerable
def each
o = self
while o
yield o.item if o.item
o = o.next
end
end
def inspect ; "#<DfLinkedList #{item.inspect} prev=#{'0x%X' % _prev} next=#{'0x%X' % _next}>" ; end
end
class Global < MemStruct
attr_accessor :_glob
def initialize(glob)
@_glob = glob
end
def _at(addr)
g = DFHack.const_get(@_glob)
g = DFHack.rtti_getclassat(g, addr)
g.new._at(addr)
end
def inspect ; "#<#{@_glob}>" ; end
end
end
class BooleanEnum
def self.int(v) ; ((v == true) || (v == 1)) ? 1 : 0 ; end
def self.sym(v) ; (!v || (v == 0)) ? false : true ; end
end
# cpp rtti name -> rb class
@rtti_n2c = {}
@rtti_c2n = {}
# cpp rtti name -> vtable ptr
@rtti_n2v = {}
@rtti_v2n = {}
def self.rtti_n2c ; @rtti_n2c ; end
def self.rtti_c2n ; @rtti_c2n ; end
def self.rtti_n2v ; @rtti_n2v ; end
def self.rtti_v2n ; @rtti_v2n ; end
# register a ruby class with a cpp rtti class name
def self.rtti_register(cppname, cls)
@rtti_n2c[cppname] = cls
@rtti_c2n[cls] = cppname
end
# return the ruby class to use for the cpp object at address if rtti info is available
def self.rtti_getclassat(cls, addr)
if addr != 0 and @rtti_c2n[cls]
# rtti info exist for class => cpp object has a vtable
@rtti_n2c[rtti_readclassname(get_vtable_ptr(addr))] || cls
else
cls
end
end
# try to read the rtti classname from an object vtable pointer
def self.rtti_readclassname(vptr)
unless n = @rtti_v2n[vptr]
n = @rtti_v2n[vptr] = get_rtti_classname(vptr).to_sym
@rtti_n2v[n] = vptr
end
n
end
# return the vtable pointer from the cpp rtti name
def self.rtti_getvtable(cppname)
unless v = @rtti_n2v[cppname]
v = get_vtable(cppname.to_s)
@rtti_n2v[cppname] = v
@rtti_v2n[v] = cppname if v != 0
end
v if v != 0
end
def self.vmethod_call(obj, voff, a0=0, a1=0, a2=0, a3=0, a4=0)
vmethod_do_call(obj._memaddr, voff, vmethod_arg(a0), vmethod_arg(a1), vmethod_arg(a2), vmethod_arg(a3))
end
def self.vmethod_arg(arg)
case arg
when nil, false; 0
when true; 1
when Integer; arg
#when String; [arg].pack('p').unpack('L')[0] # raw pointer to buffer
when MemHack::Compound; arg._memaddr
else raise "bad vmethod arg #{arg.class}"
end
end
end