dfhack/library/VersionInfo.cpp

842 lines
20 KiB
C++

/*
www.sourceforge.net/projects/dfhack
Copyright (c) 2009 Petr Mrázek (peterix), Kenneth Ferland (Impaler[WrG]), dorf
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any
damages arising from the use of this software.
Permission is granted to anyone to use this software for any
purpose, including commercial applications, and to alter it and
redistribute it freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must
not claim that you wrote the original software. If you use this
software in a product, an acknowledgment in the product documentation
would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and
must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source
distribution.
*/
#include "Internal.h"
#include "dfhack/VersionInfo.h"
#include "dfhack/DFError.h"
#include "dfhack/DFProcess.h"
//Inital amount of space in levels vector (since we usually know the number, efficient!)
#define NUM_RESERVE_LVLS 20
#define NUM_RESERVE_MOODS 6
using namespace DFHack;
/*
* Common data types
*/
namespace DFHack
{
struct t_type
{
t_type(uint32_t assign, uint32_t type, std::string classname)
:classname(classname),assign(assign),type(type){};
std::string classname;
uint32_t assign;
uint32_t type;
};
struct t_class
{
t_class(const t_class &old)
{
classname = old.classname;
vtable = old.vtable;
assign = old.assign;
type_offset = old.type_offset;
for(uint32_t i = 0; i < old.subs.size();i++)
{
t_type * t = new t_type (*old.subs[i]);
subs.push_back(t);
}
}
t_class ()
{
vtable = 0;
assign = 0;
type_offset = 0;
}
~t_class()
{
for(uint32_t i = 0; i < subs.size();i++)
{
delete subs[i];
}
subs.clear();
}
std::string classname;
uint32_t vtable;
uint32_t assign;// index to typeclass array if multiclass. return value if not.
uint32_t type_offset; // offset of type data for multiclass
std::vector<t_type *> subs;
};
}
/*
* Private data
*/
class VersionInfo::Private
{
public:
map <string, uint32_t> addresses;
map <string, int32_t> offsets;
map <string, uint32_t> hexvals;
map <string, string> strings;
vector<string> professions;
vector<string> jobs;
vector<string> skills;
vector<DFHack::t_level> levels;
vector< vector<string> > traits;
vector<string> moods;
map <uint32_t, string> labors;
// storage for class and multiclass
vector<t_class *> classes;
// cache for faster name lookup, indexed by classID
vector<string> classnames;
// map between vptr and class id, needs further type id lookup for multi-classes, not inherited
map<uint32_t, t_class *> classIDs;
// index for the next added class
uint32_t classindex;
int32_t base;
Process * p; // the process this belongs to
string version;
OSType OS;
std::string md5;
uint32_t PE_timestamp;
};
// normal constructor
VersionInfo::VersionInfo()
:d(new Private)
{
d->base = 0;
d->p = 0;
d->classindex = 0;
d->levels.reserve(NUM_RESERVE_LVLS);
d->moods.reserve(NUM_RESERVE_MOODS);
d->md5 = "invalid";
d->PE_timestamp = 0;
}
// copy constructor
VersionInfo::VersionInfo(const VersionInfo &old)
:d(new Private)
{
copy(&old);
}
void VersionInfo::copy(const VersionInfo * old)
{
d->version = old->d->version;
d->OS = old->d->OS;
d->md5 = old->d->md5;
d->PE_timestamp = old->d->PE_timestamp;
d->addresses = old->d->addresses;
d->offsets = old->d->offsets;
d->hexvals = old->d->hexvals;
d->strings = old->d->strings;
d->base = old->d->base;
//d->classes = old.d->classes;
for(uint32_t i = 0; i < old->d->classes.size(); i++)
{
t_class * copy = new t_class(*old->d->classes[i]);
d->classes.push_back(copy);
}
d->classnames = old->d->classnames;
d->classindex = old->d->classindex;
d->professions = old->d->professions;
d->jobs = old->d->jobs;
d->skills = old->d->skills;
d->traits = old->d->traits;
d->labors = old->d->labors;
d->levels = old->d->levels;
d->moods = old->d->moods;
}
void VersionInfo::setParentProcess(Process * _p)
{
d->p = _p;
}
// destructor
VersionInfo::~VersionInfo()
{
// delete the vtables
for(uint32_t i = 0; i < d->classes.size();i++)
{
delete d->classes[i];
}
// delete our data
delete d;
}
void VersionInfo::setVersion(const char * v)
{
d->version = v;
}
void VersionInfo::setVersion(const string &v)
{
d->version = v;
}
string VersionInfo::getVersion()
{
return d->version;
}
void VersionInfo::setMD5(const string &v)
{
d->md5 = v;
}
string VersionInfo::getMD5()
{
return d->md5;
}
void VersionInfo::setPE(uint32_t v)
{
d->PE_timestamp = v;
}
uint32_t VersionInfo::getPE()
{
return d->PE_timestamp;
}
void VersionInfo::setOS(const char *os)
{
string oss = os;
if(oss == "windows")
d->OS = OS_WINDOWS;
else if(oss == "linux")
d->OS = OS_LINUX;
else if(oss == "apple")
d->OS = OS_APPLE;
else
d->OS = OS_BAD;
}
void VersionInfo::setOS(const string &os)
{
if(os == "windows")
d->OS = OS_WINDOWS;
else if(os == "linux")
d->OS = OS_LINUX;
else if(os == "apple")
d->OS = OS_APPLE;
else
d->OS = OS_BAD;
}
void VersionInfo::setOS(OSType os)
{
if(os >= OS_WINDOWS && os < OS_BAD)
{
d->OS = os;
return;
}
d->OS = OS_BAD;
}
VersionInfo::OSType VersionInfo::getOS() const
{
return d->OS;
}
uint32_t VersionInfo::getBase () const
{
return d->base;
}
void VersionInfo::setBase (const string &s)
{
d->base = strtol(s.c_str(), NULL, 16);
}
void VersionInfo::setBase (const uint32_t b)
{
d->base = b;
}
void VersionInfo::setOffset (const string & key, const string & value)
{
int32_t offset = strtol(value.c_str(), NULL, 16);
d->offsets[key] = offset;
}
void VersionInfo::setAddress (const string & key, const string & value)
{
uint32_t address = strtol(value.c_str(), NULL, 16);
d->addresses[key] = address;
}
void VersionInfo::setHexValue (const string & key, const string & value)
{
uint32_t hexval = strtol(value.c_str(), NULL, 16);
d->hexvals[key] = hexval;
}
void VersionInfo::setString (const string & key, const string & value)
{
d->strings[key] = value;
}
void VersionInfo::setLabor(const string & key, const string & value)
{
uint32_t keyInt = strtol(key.c_str(), NULL, 10);
d->labors[keyInt] = value;
}
void VersionInfo::setProfession (const string & key, const string & value)
{
uint32_t keyInt = strtol(key.c_str(), NULL, 10);
if(d->professions.size() <= keyInt)
{
d->professions.resize(keyInt+1,"");
}
d->professions[keyInt] = value;
}
void VersionInfo::setJob (const string & key, const string & value)
{
uint32_t keyInt = strtol(key.c_str(), NULL, 10);
if(d->jobs.size() <= keyInt)
{
d->jobs.resize(keyInt+1);
}
d->jobs[keyInt] = value;
}
void VersionInfo::setSkill (const string & key, const string & value)
{
uint32_t keyInt = strtol(key.c_str(), NULL, 10);
if(d->skills.size() <= keyInt){
d->skills.resize(keyInt+1);
}
d->skills[keyInt] = value;
}
void VersionInfo::setLevel(const std::string &nLevel,
const std::string &nName,
const std::string &nXp)
{
uint32_t keyInt = strtol(nLevel.c_str(), NULL, 10);
if(d->levels.size() <= keyInt)
d->levels.resize(keyInt+1);
d->levels[keyInt].level = keyInt;
d->levels[keyInt].name = nName;
d->levels[keyInt].xpNxtLvl = strtol(nXp.c_str(), NULL, 10);
}
void VersionInfo::setMood(const std::string &id, const std::string &mood)
{
uint32_t keyInt = strtol(id.c_str(), NULL, 10);
if(d->moods.size() <= keyInt)
d->moods.resize(keyInt+1);
d->moods[keyInt] = mood;
}
void VersionInfo::setTrait(const string & key,
const string & value,
const string & zero,
const string & one,
const string & two,
const string & three,
const string & four,
const string & five)
{
uint32_t keyInt = strtol(key.c_str(), NULL, 10);
if(d->traits.size() <= keyInt)
{
d->traits.resize(keyInt+1);
}
d->traits[keyInt].push_back(zero);
d->traits[keyInt].push_back(one);
d->traits[keyInt].push_back(two);
d->traits[keyInt].push_back(three);
d->traits[keyInt].push_back(four);
d->traits[keyInt].push_back(five);
d->traits[keyInt].push_back(value);
}
// FIXME: next three methods should use some kind of custom container so it doesn't have to search so much.
t_class * VersionInfo::setClass (const char * name, uint32_t vtable, uint32_t typeoffset)
{
if(name == 0)
return 0;
for (uint32_t i=0; i<d->classes.size(); i++)
{
if(d->classes[i]->classname == name)
{
if(vtable != 0)
d->classes[i]->vtable = vtable;
if(typeoffset != 0)
d->classes[i]->type_offset = typeoffset;
return d->classes[i];
}
}
t_class *cls = new t_class();
// get an unique ID and add ourselves to the index
cls->assign = d->classindex;
cls->classname = name;
d->classnames.push_back(name);
// vtables no longer a requirement
cls->vtable = vtable;
// multi class yes/no
cls->type_offset = typeoffset;
d->classes.push_back(cls);
d->classindex++;
return cls;
}
void VersionInfo::setClassChild (t_class * parent, const char * name, const char * type)
{
vector <t_type *>& vec = parent->subs;
for (uint32_t i=0; i<vec.size(); i++)
{
if(vec[i]->classname == name)
{
vec[i]->type = strtol(type, NULL, 16);
return;
}
}
// new multiclass child
t_type *mcc = new t_type(d->classindex,strtol(type, NULL, 16),name);
d->classnames.push_back(name);
vec.push_back(mcc);
d->classindex++;
//cout << " classtype " << name << ", assign " << mcc->assign << ", vtable " << mcc->type << endl;
}
// FIXME: stupid. we need a better container
bool VersionInfo::resolveObjectToClassID(const uint32_t address, int32_t & classid)
{
uint32_t vtable = d->p->readDWord(address);
// try to find the vtable in our cache
map<uint32_t, t_class *>::iterator it;
it = d->classIDs.find(vtable);
t_class * cl;
// class found in cache?
if(it != d->classIDs.end())
{
cl = (*it).second;
}
else// couldn't find?
{
// we set up the class for the first time
string classname = d->p->readClassName(vtable);
d->classIDs[vtable] = cl = setClass(classname.c_str(),vtable);
}
// and isn't a multi-class
if(!cl->type_offset)
{
// return
classid = cl->assign;
return true;
}
// and is a multiclass
else
{
// find the type
vector <t_type*>& vec = cl->subs;
uint32_t type = d->p->readWord(address + cl->type_offset);
// return typed building if successful
//FIXME: the vector should map directly to the type IDs here, so we don't have to mess with O(n) search
for (uint32_t k = 0; k < vec.size();k++)
{
if(vec[k]->type == type)
{
//cout << " multi " << address + classes[i].type_offset << " " << vec[k].classname << endl;
classid = vec[k]->assign;
return true;
}
}
// couldn't find the type... now what do we do here? throw?
// this is a case where it might be a good idea, because it uncovers some deeper problems
// we return the parent class instead, it doesn't change the API semantics and sort-of makes sense
classid = cl->assign;
return true;
}
}
//ALERT: doesn't care about multiclasses
bool VersionInfo::resolveClassnameToVPtr(const string classname, uint32_t & vptr)
{
// FIXME: another stupid search.
for(uint32_t i = 0;i< d->classes.size();i++)
{
//if(classes[i].)
if(d->classes[i]->classname == classname) // got class
{
vptr = d->classes[i]->vtable;
return true;
}
}
// we failed to find anything that would match
return false;
}
bool VersionInfo::resolveClassnameToClassID (const string classname, int32_t & classID)
{
// FIXME: another stupid search.
classID = -1;
for(uint32_t i = 0;i< d->classnames.size();i++)
{
if(d->classnames[i] == classname)
{
classID = i;
return true;
}
}
// we failed to find anything that would match
return false;
}
bool VersionInfo::resolveClassIDToClassname (const int32_t classID, string & classname)
{
if (classID >=0 && (uint32_t)classID < d->classnames.size())
{
classname = d->classnames[classID];
return true;
}
return false;
}
// return pointer to our internal classID -> className mapping
const vector<string> * VersionInfo::getClassIDMapping()
{
return &d->classnames;
}
// change base of all addresses
void VersionInfo::RebaseAddresses(const int32_t new_base)
{
map<string, uint32_t>::iterator iter;
int32_t rebase = - (int32_t)d->base + new_base;
for(iter = d->addresses.begin(); iter != d->addresses.end(); iter++)
{
d->addresses[iter->first] = iter->second + rebase;
}
}
// change base of all addresses *and* vtable entries
void VersionInfo::RebaseAll(int32_t new_base)
{
RebaseAddresses(new_base);
int32_t rebase = - (int32_t)d->base + new_base;
RebaseVTable(rebase);
}
// change all vtable entries by offset
void VersionInfo::RebaseVTable(int32_t offset)
{
vector<t_class *>::iterator iter;
for(iter = d->classes.begin(); iter != d->classes.end(); iter++)
{
(*iter)->vtable += offset;
}
}
// Get named address
uint32_t VersionInfo::getAddress (const char *key)
{
map <string, uint32_t>::iterator iter = d->addresses.find(key);
if(iter != d->addresses.end())
{
return (*iter).second;
}
throw Error::MissingMemoryDefinition("address", key);
}
// Get named offset
int32_t VersionInfo::getOffset (const char *key)
{
map <string, int32_t>::iterator iter = d->offsets.find(key);
if(iter != d->offsets.end())
{
return (*iter).second;
}
throw Error::MissingMemoryDefinition("offset", key);
}
// Get named numerical value
uint32_t VersionInfo::getHexValue (const char *key)
{
map <string, uint32_t>::iterator iter = d->hexvals.find(key);
if(iter != d->hexvals.end())
{
return (*iter).second;
}
throw Error::MissingMemoryDefinition("hexvalue", key);
}
// Get named address
uint32_t VersionInfo::getAddress (const string &key)
{
map <string, uint32_t>::iterator iter = d->addresses.find(key);
if(iter != d->addresses.end())
{
return (*iter).second;
}
throw Error::MissingMemoryDefinition("address", key.c_str());
}
// Get named offset
int32_t VersionInfo::getOffset (const string &key)
{
map <string, int32_t>::iterator iter = d->offsets.find(key);
if(iter != d->offsets.end())
{
return (*iter).second;
}
throw Error::MissingMemoryDefinition("offset", key.c_str());
}
// Get named numerical value
uint32_t VersionInfo::getHexValue (const string &key)
{
map <string, uint32_t>::iterator iter = d->hexvals.find(key);
if(iter != d->hexvals.end())
{
return (*iter).second;
}
throw Error::MissingMemoryDefinition("hexvalue", key.c_str());
}
// Get named string
std::string VersionInfo::getString (const string &key)
{
map <string, string>::iterator iter = d->strings.find(key);
if(iter != d->strings.end())
{
return (*iter).second;
}
throw Error::MissingMemoryDefinition("string", key.c_str());
}
// Get Profession
string VersionInfo::getProfession (const uint32_t key) const
{
if(d->professions.size() > key)
{
return d->professions[key];
}
throw Error::MissingMemoryDefinition("profession", key);
}
// Get Job
string VersionInfo::getJob (const uint32_t key) const
{
if(d->jobs.size() > key)
{
return d->jobs[key];
}
throw Error::MissingMemoryDefinition("job", key);
}
string VersionInfo::getSkill (const uint32_t key) const
{
if(d->skills.size() > key)
{
return d->skills[key];
}
throw Error::MissingMemoryDefinition("skill", key);
}
DFHack::t_level VersionInfo::getLevelInfo(const uint32_t level) const
{
if(d->levels.size() > level)
{
return d->levels[level];
}
throw Error::MissingMemoryDefinition("Level", level);
}
// FIXME: ugly hack that needs to die
int absolute (int number)
{
if (number < 0)
return -number;
return number;
}
string VersionInfo::getTrait (const uint32_t traitIdx, const uint32_t traitValue) const
{
if(d->traits.size() > traitIdx)
{
int diff = absolute(traitValue-50);
if(diff < 10)
{
return string("");
}
if (traitValue >= 91)
return d->traits[traitIdx][5];
else if (traitValue >= 76)
return d->traits[traitIdx][4];
else if (traitValue >= 61)
return d->traits[traitIdx][3];
else if (traitValue >= 25)
return d->traits[traitIdx][2];
else if (traitValue >= 10)
return d->traits[traitIdx][1];
else
return d->traits[traitIdx][0];
}
throw Error::MissingMemoryDefinition("trait", traitIdx);
}
string VersionInfo::getTraitName(const uint32_t traitIdx) const
{
if(d->traits.size() > traitIdx)
{
return d->traits[traitIdx][d->traits[traitIdx].size()-1];
}
throw Error::MissingMemoryDefinition("traitname", traitIdx);
}
std::vector< std::vector<std::string> > const& VersionInfo::getAllTraits()
{
return d->traits;
}
string VersionInfo::getLabor (const uint32_t laborIdx)
{
if(d->labors.count(laborIdx))
{
return d->labors[laborIdx];
}
throw Error::MissingMemoryDefinition("labor", laborIdx);
}
std::string VersionInfo::getMood(const uint32_t moodID)
{
if(d->moods.size() > moodID)
{
return d->moods[moodID];
}
throw Error::MissingMemoryDefinition("Mood", moodID);
}
std::string VersionInfo::PrintOffsets()
{
ostringstream ss;
ss << "<Version name=\"" << getVersion() << "\">" << endl;
switch (getOS())
{
case OS_LINUX:
ss << "<MD5 value=\"" << getString("md5") << "\" />" << endl;
break;
case OS_WINDOWS:
ss << "<PETimeStamp value=\"" << hex << "0x" << getHexValue("pe_timestamp") << "\" />" << endl;
ss << "<MD5 value=\"" << getString("md5") << "\" />" << endl;
break;
default:
ss << " UNKNOWN" << endl;
}
ss << "<Offsets>" << endl;
map<string,uint32_t>::const_iterator iter;
for(iter = d->addresses.begin(); iter != d->addresses.end(); iter++)
{
ss << " <Address name=\"" << (*iter).first << "\" value=\"" << hex << "0x" << (*iter).second << "\" />" << endl;
}
map<string,int32_t>::const_iterator iter2;
for(iter2 = d->offsets.begin(); iter2 != d->offsets.end(); iter2++)
{
ss << " <Offset name=\"" << (*iter2).first << "\" value=\"" << hex << "0x" << (*iter2).second <<"\" />" << endl;
}
for(iter = d->hexvals.begin(); iter != d->hexvals.end(); iter++)
{
ss << " <HexValue name=\"" << (*iter).first << "\" value=\"" << hex << "0x" << (*iter).second <<"\" />" << endl;
}
map<string,string>::const_iterator iter3;
for(iter3 = d->strings.begin(); iter3 != d->strings.end(); iter3++)
{
ss << " <String name=\"" << (*iter3).first << "\" value=\"" << (*iter3).second <<"\" />" << endl;
}
ss << "</Offsets>" << endl;
ss << "</Version>" << endl;
return ss.str();
}