#include "Core.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "df/graphic.h" #include "df/building_siegeenginest.h" #include "df/builtin_mats.h" #include "df/world.h" #include "df/buildings_other_id.h" #include "df/job.h" #include "df/building_drawbuffer.h" #include "df/ui.h" #include "df/viewscreen_dwarfmodest.h" #include "df/ui_build_selector.h" #include "df/flow_info.h" #include "df/report.h" #include "df/proj_itemst.h" #include "df/unit.h" #include "df/unit_soul.h" #include "df/unit_skill.h" #include "df/physical_attribute_type.h" #include "df/creature_raw.h" #include "df/caste_raw.h" #include "df/caste_raw_flags.h" #include "df/assumed_identity.h" #include "df/game_mode.h" #include "df/unit_misc_trait.h" #include "MiscUtils.h" using std::vector; using std::string; using std::stack; using namespace DFHack; using namespace df::enums; using df::global::gamemode; using df::global::gps; using df::global::world; using df::global::ui; using df::global::ui_build_selector; using Screen::Pen; DFHACK_PLUGIN("siege-engine"); /* * Misc. utils */ typedef std::pair coord_range; static void set_range(coord_range *target, df::coord p1, df::coord p2) { if (!p1.isValid() || !p2.isValid()) { *target = coord_range(); } else { target->first.x = std::min(p1.x, p2.x); target->first.y = std::min(p1.y, p2.y); target->first.z = std::min(p1.z, p2.z); target->second.x = std::max(p1.x, p2.x); target->second.y = std::max(p1.y, p2.y); target->second.z = std::max(p1.z, p2.z); } } static bool is_range_valid(const coord_range &target) { return target.first.isValid() && target.second.isValid(); } static bool is_in_range(const coord_range &target, df::coord pos) { return target.first.isValid() && target.second.isValid() && target.first.x <= pos.x && pos.x <= target.second.x && target.first.y <= pos.y && pos.y <= target.second.y && target.first.z <= pos.z && pos.z <= target.second.z; } static std::pair get_engine_range(df::building_siegeenginest *bld) { if (bld->type == siegeengine_type::Ballista) return std::make_pair(0, 200); else return std::make_pair(30, 100); } static void orient_engine(df::building_siegeenginest *bld, df::coord target) { int dx = target.x - bld->centerx; int dy = target.y - bld->centery; if (abs(dx) > abs(dy)) bld->facing = (dx > 0) ? df::building_siegeenginest::Right : df::building_siegeenginest::Left; else bld->facing = (dy > 0) ? df::building_siegeenginest::Down : df::building_siegeenginest::Up; } static int random_int(int val) { return int(int64_t(rand())*val/RAND_MAX); } static int point_distance(df::coord speed) { return std::max(abs(speed.x), std::max(abs(speed.y), abs(speed.z))); } /* * Configuration management */ static bool enable_plugin(); struct EngineInfo { int id; coord_range target; df::coord center; int proj_speed, hit_delay; bool hasTarget() { return is_range_valid(target); } bool onTarget(df::coord pos) { return is_in_range(target, pos); } df::coord getTargetSize() { return target.second - target.first; } }; static std::map engines; static std::map coord_engines; static EngineInfo *find_engine(df::building *bld, bool create = false) { if (!bld) return NULL; auto it = engines.find(bld); if (it != engines.end()) return &it->second; if (!create) return NULL; auto *obj = &engines[bld]; obj->id = bld->id; obj->center = df::coord(bld->centerx, bld->centery, bld->z); obj->proj_speed = 2; obj->hit_delay = 3; coord_engines[obj->center] = bld; return obj; } static EngineInfo *find_engine(df::coord pos) { return find_engine(coord_engines[pos]); } static void clear_engines() { engines.clear(); coord_engines.clear(); } static void load_engines() { clear_engines(); auto pworld = Core::getInstance().getWorld(); std::vector vec; pworld->GetPersistentData(&vec, "siege-engine/target/", true); for (auto it = vec.begin(); it != vec.end(); ++it) { auto engine = find_engine(df::building::find(it->ival(0)), true); if (!engine) continue; engine->target.first = df::coord(it->ival(1), it->ival(2), it->ival(3)); engine->target.second = df::coord(it->ival(4), it->ival(5), it->ival(6)); } } static int getTargetArea(lua_State *L) { auto bld = Lua::CheckDFObject(L, 1); if (!bld) luaL_argerror(L, 1, "null building"); auto engine = find_engine(bld); if (engine && engine->hasTarget()) { Lua::Push(L, engine->target.first); Lua::Push(L, engine->target.second); } else { lua_pushnil(L); lua_pushnil(L); } return 2; } static void clearTargetArea(df::building_siegeenginest *bld) { CHECK_NULL_POINTER(bld); if (auto engine = find_engine(bld)) engine->target = coord_range(); auto pworld = Core::getInstance().getWorld(); auto key = stl_sprintf("siege-engine/target/%d", bld->id); pworld->DeletePersistentData(pworld->GetPersistentData(key)); } static bool setTargetArea(df::building_siegeenginest *bld, df::coord target_min, df::coord target_max) { CHECK_NULL_POINTER(bld); CHECK_INVALID_ARGUMENT(target_min.isValid() && target_max.isValid()); if (!enable_plugin()) return false; auto pworld = Core::getInstance().getWorld(); auto key = stl_sprintf("siege-engine/target/%d", bld->id); auto entry = pworld->GetPersistentData(key, NULL); if (!entry.isValid()) return false; auto engine = find_engine(bld, true); set_range(&engine->target, target_min, target_max); entry.ival(0) = bld->id; entry.ival(1) = engine->target.first.x; entry.ival(2) = engine->target.first.y; entry.ival(3) = engine->target.first.z; entry.ival(4) = engine->target.second.x; entry.ival(5) = engine->target.second.y; entry.ival(6) = engine->target.second.z; df::coord sum = target_min + target_max; orient_engine(bld, df::coord(sum.x/2, sum.y/2, sum.z/2)); return true; } /* * Trajectory */ struct ProjectilePath { df::coord origin, goal, target, fudge_delta; int divisor, fudge_factor; df::coord speed, direction; ProjectilePath(df::coord origin, df::coord goal) : origin(origin), goal(goal), target(goal), fudge_factor(1) { fudge_delta = df::coord(0,0,0); calc_line(); } void fudge(int factor, df::coord delta) { fudge_factor = factor; fudge_delta = delta; auto diff = goal - origin; diff.x *= fudge_factor; diff.y *= fudge_factor; diff.z *= fudge_factor; target = origin + diff + fudge_delta; calc_line(); } void calc_line() { speed = target - origin; divisor = point_distance(speed); if (divisor <= 0) divisor = 1; direction = df::coord(speed.x>=0?1:-1,speed.y>=0?1:-1,speed.z>=0?1:-1); } df::coord operator[] (int i) const { int div2 = divisor * 2; int bias = divisor-1; return origin + df::coord( (2*speed.x*i + direction.x*bias)/div2, (2*speed.y*i + direction.y*bias)/div2, (2*speed.z*i + direction.z*bias)/div2 ); } }; static bool isPassableTile(df::coord pos) { auto ptile = Maps::getTileType(pos); return !ptile || FlowPassable(*ptile); } struct PathMetrics { enum CollisionType { Impassable, Floor, Ceiling, MapEdge } hit_type; int collision_step; int goal_step, goal_z_step; std::vector coords; bool hits() { return collision_step > goal_step; } PathMetrics(const ProjectilePath &path, bool list_coords = false) { coords.clear(); collision_step = goal_step = goal_z_step = 1000000; int step = 0; df::coord prev_pos = path.origin; if (list_coords) coords.push_back(prev_pos); for (;;) { df::coord cur_pos = path[++step]; if (cur_pos == prev_pos) break; if (list_coords) coords.push_back(cur_pos); if (cur_pos.z == path.goal.z) { goal_z_step = std::min(step, goal_z_step); if (cur_pos == path.goal) goal_step = step; } if (!Maps::isValidTilePos(cur_pos)) { hit_type = PathMetrics::MapEdge; break; } if (!isPassableTile(cur_pos)) { hit_type = Impassable; break; } if (cur_pos.z != prev_pos.z) { int top_z = std::max(prev_pos.z, cur_pos.z); auto ptile = Maps::getTileType(cur_pos.x, cur_pos.y, top_z); if (ptile && !LowPassable(*ptile)) { hit_type = (cur_pos.z > prev_pos.z ? Ceiling : Floor); break; } } prev_pos = cur_pos; } collision_step = step; } }; struct AimContext { df::building_siegeenginest *bld; df::coord origin; coord_range building_rect; EngineInfo *engine; std::pair fire_range; AimContext(df::building_siegeenginest *bld, EngineInfo *engine) : bld(bld), engine(engine) { origin = df::coord(bld->centerx, bld->centery, bld->z); building_rect = coord_range( df::coord(bld->x1, bld->y1, bld->z), df::coord(bld->x2, bld->y2, bld->z) ); fire_range = get_engine_range(bld); } bool isInRange(const PathMetrics &raytrace) { return raytrace.goal_step >= fire_range.first && raytrace.goal_step <= fire_range.second; } bool adjustToPassable(df::coord *pos) { if (isPassableTile(*pos)) return true; for (df::coord fudge = *pos; fudge.z < engine->target.second.z; fudge.z++) { if (!isPassableTile(fudge)) continue; *pos = fudge; return true; } for (df::coord fudge = *pos; fudge.z > engine->target.first.z; fudge.z--) { if (!isPassableTile(fudge)) continue; *pos = fudge; return true; } return false; } }; static std::string getTileStatus(df::building_siegeenginest *bld, df::coord tile_pos) { AimContext context(bld, NULL); ProjectilePath path(context.origin, tile_pos); PathMetrics raytrace(path); if (raytrace.hits()) { if (context.isInRange(raytrace)) return "ok"; else return "out_of_range"; } else return "blocked"; } static void paintAimScreen(df::building_siegeenginest *bld, df::coord view, df::coord2d ltop, df::coord2d size) { CHECK_NULL_POINTER(bld); AimContext context(bld, find_engine(bld)); for (int x = 0; x < size.x; x++) { for (int y = 0; y < size.y; y++) { df::coord tile_pos = view + df::coord(x,y,0); if (is_in_range(context.building_rect, tile_pos)) continue; Pen cur_tile = Screen::readTile(ltop.x+x, ltop.y+y); if (!cur_tile.valid()) continue; ProjectilePath path(context.origin, tile_pos); PathMetrics raytrace(path); int color; if (raytrace.hits()) { if (context.isInRange(raytrace)) color = COLOR_GREEN; else color = COLOR_CYAN; } else color = COLOR_RED; if (cur_tile.fg && cur_tile.ch != ' ') { cur_tile.fg = color; cur_tile.bg = 0; } else { cur_tile.fg = 0; cur_tile.bg = color; } cur_tile.bold = (context.engine && context.engine->onTarget(tile_pos)); if (cur_tile.tile) cur_tile.tile_mode = Pen::CharColor; Screen::paintTile(cur_tile, ltop.x+x, ltop.y+y); } } } /* * Unit tracking */ static const float MAX_TIME = 1000000.0f; struct UnitPath { df::unit *unit; std::map path; struct Hit { UnitPath *path; df::coord pos; int dist; float time, lmargin, rmargin; }; static std::map cache; static UnitPath *get(df::unit *unit) { auto &cv = cache[unit]; if (!cv) cv = new UnitPath(unit); return cv; }; UnitPath(df::unit *unit) : unit(unit) { df::coord pos = unit->pos; df::coord dest = unit->path.dest; auto &upath = unit->path.path; if (dest.isValid() && !upath.x.empty()) { float time = unit->counters.job_counter+0.5f; float speed = Units::computeMovementSpeed(unit)/100.0f; for (size_t i = 0; i < upath.size(); i++) { df::coord new_pos = upath[i]; if (new_pos == pos) continue; float delay = speed; if (new_pos.x != pos.x && new_pos.y != pos.y) delay *= 362.0/256.0; path[time] = pos; pos = new_pos; time += delay + 1; } } path[MAX_TIME] = pos; } void get_margin(std::map::iterator &it, float time, float *lmargin, float *rmargin) { auto it2 = it; *lmargin = (it == path.begin()) ? MAX_TIME : time - (--it2)->first; *rmargin = (it->first == MAX_TIME) ? MAX_TIME : it->first - time; } df::coord posAtTime(float time, float *lmargin = NULL, float *rmargin = NULL) { CHECK_INVALID_ARGUMENT(time < MAX_TIME); auto it = path.upper_bound(time); if (lmargin) get_margin(it, time, lmargin, rmargin); return it->second; } bool findHits(EngineInfo *engine, std::vector *hit_points, float bias) { df::coord origin = engine->center; Hit info; info.path = this; for (auto it = path.begin(); it != path.end(); ++it) { info.pos = it->second; info.dist = point_distance(origin - info.pos); info.time = float(info.dist)*(engine->proj_speed+1) + engine->hit_delay + bias; get_margin(it, info.time, &info.lmargin, &info.rmargin); if (info.lmargin > 0 && info.rmargin > 0) { if (engine->onTarget(info.pos)) hit_points->push_back(info); } } return !hit_points->empty(); } }; std::map UnitPath::cache; static void push_margin(lua_State *L, float margin) { if (margin == MAX_TIME) lua_pushnil(L); else lua_pushnumber(L, margin); } static int traceUnitPath(lua_State *L) { auto unit = Lua::CheckDFObject(L, 1); CHECK_NULL_POINTER(unit); size_t idx = 1; auto info = UnitPath::get(unit); lua_createtable(L, info->path.size(), 0); float last_time = 0.0f; for (auto it = info->path.begin(); it != info->path.end(); ++it) { Lua::Push(L, it->second); if (idx > 1) { lua_pushnumber(L, last_time); lua_setfield(L, -2, "from"); } if (idx < info->path.size()) { lua_pushnumber(L, it->first); lua_setfield(L, -2, "to"); } lua_rawseti(L, -2, idx++); last_time = it->first; } return 1; } static int unitPosAtTime(lua_State *L) { auto unit = Lua::CheckDFObject(L, 1); float time = luaL_checknumber(L, 2); CHECK_NULL_POINTER(unit); float lmargin, rmargin; auto info = UnitPath::get(unit); Lua::Push(L, info->posAtTime(time, &lmargin, &rmargin)); push_margin(L, lmargin); push_margin(L, rmargin); return 3; } static void proposeUnitHits(EngineInfo *engine, std::vector *hits, float bias) { auto &active = world->units.active; for (size_t i = 0; i < active.size(); i++) { auto unit = active[i]; if (unit->flags1.bits.dead || unit->flags3.bits.ghostly || unit->flags1.bits.caged || unit->flags1.bits.chained || unit->flags1.bits.rider || unit->flags1.bits.hidden_in_ambush) continue; UnitPath::get(unit)->findHits(engine, hits, bias); } } static int proposeUnitHits(lua_State *L) { auto bld = Lua::CheckDFObject(L, 1); float bias = luaL_optnumber(L, 2, 0); auto engine = find_engine(bld); if (!engine) luaL_error(L, "no such engine"); if (!engine->hasTarget()) luaL_error(L, "target not set"); std::vector hits; proposeUnitHits(engine, &hits, bias); lua_createtable(L, hits.size(), 0); for (size_t i = 0; i < hits.size(); i++) { auto &hit = hits[i]; lua_createtable(L, 0, 6); Lua::PushDFObject(L, hit.path->unit); lua_setfield(L, -2, "unit"); Lua::Push(L, hit.pos); lua_setfield(L, -2, "pos"); lua_pushnumber(L, hit.dist); lua_setfield(L, -2, "dist"); lua_pushnumber(L, hit.time); lua_setfield(L, -2, "time"); push_margin(L, hit.lmargin); lua_setfield(L, -2, "lmargin"); push_margin(L, hit.rmargin); lua_setfield(L, -2, "rmargin"); lua_rawseti(L, -2, i+1); } return 1; } #if 0 struct UnitContext { AimContext &ctx; struct UnitInfo { df::unit *unit; UnitPath path; float score; UnitInfo(df::unit *unit) : unit(unit), path(unit) {} }; std::map units; UnitContext(AimContext &ctx) : ctx(ctx) {} ~UnitContext() { for (auto it = units.begin(); it != units.end(); ++it) delete it->second; } float unit_score(df::unit *unit) { float score = 1.0f; if (unit->flags1.bits.tame && unit->civ_id == ui->civ_id) score = -1.0f; if (unit->flags1.bits.diplomat || unit->flags1.bits.merchant) score = -2.0f; else if (Units::isCitizen(unit)) score = -10.0f; else { if (unit->flags1.bits.marauder) score += 0.5f; if (unit->flags1.bits.active_invader) score += 1.0f; if (unit->flags1.bits.invader_origin) score += 1.0f; if (unit->flags1.bits.invades) score += 1.0f; if (unit->flags1.bits.hidden_ambusher) score += 1.0f; } if (unit->flags1.bits.ridden) { for (size_t i = 0; i < unit->refs.size(); i++) { if (!unit->refs[i]->getType() == general_ref_type::UNIT_RIDER) continue; if (auto rider = unit->refs[i]->getUnit()) score += unit_score(rider); } } } void select_units() { auto &active = world->units.active; for (size_t i = 0; i < active.size(); i++) { auto unit = active[i]; if (unit->flags1.bits.dead || unit->flags3.bits.ghostly || unit->flags1.bits.caged || unit->flags1.bits.chained || unit->flags1.bits.rider || unit->flags1.bits.hidden_in_ambush) continue; auto info = units[unit] = new UnitInfo(unit); info->findHits(ctx, ctx.proj_hit_delay); info->score = unit_score(unit); } } }; #endif /* * Projectile hook */ struct projectile_hook : df::proj_itemst { typedef df::proj_itemst interpose_base; void aimAtPoint(AimContext &context, ProjectilePath &path, bool bad_shot = false) { target_pos = path.target; PathMetrics raytrace(path); // Materialize map blocks, or the projectile will crash into them for (int i = 0; i < raytrace.collision_step; i++) Maps::ensureTileBlock(path[i]); if (flags.bits.piercing) { if (bad_shot) fall_threshold = std::min(raytrace.goal_z_step, raytrace.collision_step); } else { if (bad_shot) fall_threshold = context.fire_range.second; else fall_threshold = raytrace.goal_step; } fall_threshold = std::max(fall_threshold, context.fire_range.first); fall_threshold = std::min(fall_threshold, context.fire_range.second); } void aimAtArea(AimContext &context) { df::coord target, last_passable; df::coord tbase = context.engine->target.first; df::coord tsize = context.engine->getTargetSize(); bool success = false; for (int i = 0; i < 50; i++) { target = tbase + df::coord( random_int(tsize.x), random_int(tsize.y), random_int(tsize.z) ); if (context.adjustToPassable(&target)) last_passable = target; else continue; ProjectilePath path(context.origin, target); PathMetrics raytrace(path); if (raytrace.hits() && context.isInRange(raytrace)) { aimAtPoint(context, path); return; } } if (!last_passable.isValid()) last_passable = target; ProjectilePath path(context.origin, last_passable); aimAtPoint(context, path, true); } void doCheckMovement() { if (distance_flown != 0 || fall_counter != fall_delay) return; auto engine = find_engine(origin_pos); if (!engine || !engine->hasTarget()) return; auto bld0 = df::building::find(engine->id); auto bld = strict_virtual_cast(bld0); if (!bld) return; AimContext context(bld, engine); aimAtArea(context); } DEFINE_VMETHOD_INTERPOSE(bool, checkMovement, ()) { if (flags.bits.high_flying || flags.bits.piercing) doCheckMovement(); return INTERPOSE_NEXT(checkMovement)(); } }; IMPLEMENT_VMETHOD_INTERPOSE(projectile_hook, checkMovement); /* * Initialization */ DFHACK_PLUGIN_LUA_FUNCTIONS { DFHACK_LUA_FUNCTION(clearTargetArea), DFHACK_LUA_FUNCTION(setTargetArea), DFHACK_LUA_FUNCTION(getTileStatus), DFHACK_LUA_FUNCTION(paintAimScreen), DFHACK_LUA_END }; DFHACK_PLUGIN_LUA_COMMANDS { DFHACK_LUA_COMMAND(getTargetArea), DFHACK_LUA_COMMAND(traceUnitPath), DFHACK_LUA_COMMAND(unitPosAtTime), DFHACK_LUA_COMMAND(proposeUnitHits), DFHACK_LUA_END }; static bool is_enabled = false; static void enable_hooks(bool enable) { is_enabled = enable; INTERPOSE_HOOK(projectile_hook, checkMovement).apply(enable); if (enable) load_engines(); else clear_engines(); } static bool enable_plugin() { if (is_enabled) return true; auto pworld = Core::getInstance().getWorld(); auto entry = pworld->GetPersistentData("siege-engine/enabled", NULL); if (!entry.isValid()) return false; enable_hooks(true); return true; } static void clear_caches() { if (!UnitPath::cache.empty()) { for (auto it = UnitPath::cache.begin(); it != UnitPath::cache.end(); ++it) delete it->second; UnitPath::cache.clear(); } } DFhackCExport command_result plugin_onstatechange(color_ostream &out, state_change_event event) { switch (event) { case SC_MAP_LOADED: { auto pworld = Core::getInstance().getWorld(); bool enable = pworld->GetPersistentData("siege-engine/enabled").isValid(); if (enable) { out.print("Enabling the siege engine plugin.\n"); enable_hooks(true); } else enable_hooks(false); } break; case SC_MAP_UNLOADED: enable_hooks(false); break; default: break; } return CR_OK; } DFhackCExport command_result plugin_init ( color_ostream &out, std::vector &commands) { if (Core::getInstance().isMapLoaded()) plugin_onstatechange(out, SC_MAP_LOADED); return CR_OK; } DFhackCExport command_result plugin_shutdown ( color_ostream &out ) { enable_hooks(false); return CR_OK; } DFhackCExport command_result plugin_onupdate ( color_ostream &out ) { clear_caches(); return CR_OK; }