// Produces a list of materials available on the map. // Options: // -a : show unrevealed tiles // -p : don't show plants // -s : don't show slade // -t : don't show demon temple //#include <cstdlib> #include <iostream> #include <iomanip> #include <map> #include <algorithm> #include <functional> #include <vector> using namespace std; #include "Core.h" #include "Console.h" #include "Export.h" #include "PluginManager.h" #include "modules/Gui.h" #include "modules/MapCache.h" #include "MiscUtils.h" #include "DataDefs.h" #include "df/world.h" #include "df/world_data.h" #include "df/world_region_details.h" #include "df/world_region_feature.h" #include "df/world_geo_biome.h" #include "df/world_geo_layer.h" #include "df/world_underground_region.h" #include "df/feature_init.h" #include "df/region_map_entry.h" #include "df/inclusion_type.h" #include "df/viewscreen_choose_start_sitest.h" #include "df/plant.h" using namespace DFHack; using namespace df::enums; using df::coord2d; DFHACK_PLUGIN("prospector"); REQUIRE_GLOBAL(world); struct matdata { const static int invalid_z = -30000; matdata() { count = 0; lower_z = invalid_z; upper_z = invalid_z; } matdata (const matdata & copyme) { count = copyme.count; lower_z = copyme.lower_z; upper_z = copyme.upper_z; } unsigned int add( int z_level = invalid_z, int delta = 1 ) { count += delta; if(z_level != invalid_z) { if(lower_z == invalid_z || z_level < lower_z) { lower_z = z_level; } if(upper_z == invalid_z || z_level > upper_z) { upper_z = z_level; } } return count; } unsigned int count; int lower_z; int upper_z; }; bool operator>(const matdata & q1, const matdata & q2) { return q1.count > q2.count; } template<typename _Tp = matdata > struct shallower : public binary_function<_Tp, _Tp, bool> { bool operator()(const _Tp& top, const _Tp& bottom) const { float topavg = (top.lower_z + top.upper_z)/2.0f; float btmavg = (bottom.lower_z + bottom.upper_z)/2.0f; return topavg > btmavg; } }; typedef std::map<int16_t, matdata> MatMap; typedef std::vector< pair<int16_t, matdata> > MatSorter; typedef std::vector<df::plant *> PlantList; #define TO_PTR_VEC(obj_vec, ptr_vec) \ ptr_vec.clear(); \ for (size_t i = 0; i < obj_vec.size(); i++) \ ptr_vec.push_back(&obj_vec[i]) template<template <typename> class P = std::greater > struct compare_pair_second { template<class T1, class T2> bool operator()(const std::pair<T1, T2>& left, const std::pair<T1, T2>& right) { return P<T2>()(left.second, right.second); } }; static void printMatdata(color_ostream &con, const matdata &data, bool only_z = false) { if (!only_z) con << std::setw(9) << data.count; if(data.lower_z != data.upper_z) con <<" Z:" << std::setw(4) << data.lower_z << ".." << data.upper_z << std::endl; else con <<" Z:" << std::setw(4) << data.lower_z << std::endl; } static int getValue(const df::inorganic_raw &info) { return info.material.material_value; } static int getValue(const df::plant_raw &info) { return info.value; } template <typename T, template <typename> class P> void printMats(color_ostream &con, MatMap &mat, std::vector<T*> &materials, bool show_value) { unsigned int total = 0; MatSorter sorting_vector; for (MatMap::const_iterator it = mat.begin(); it != mat.end(); ++it) { sorting_vector.push_back(*it); } std::sort(sorting_vector.begin(), sorting_vector.end(), compare_pair_second<P>()); for (MatSorter::const_iterator it = sorting_vector.begin(); it != sorting_vector.end(); ++it) { if(it->first >= materials.size()) { con << "Bad index: " << it->first << " out of " << materials.size() << endl; continue; } T* mat = materials[it->first]; // Somewhat of a hack, but it works because df::inorganic_raw and df::plant_raw both have a field named "id" con << std::setw(25) << mat->id << " : "; if (show_value) con << std::setw(3) << getValue(*mat) << " : "; printMatdata(con, it->second); total += it->second.count; } con << ">>> TOTAL = " << total << std::endl << std::endl; } void printVeins(color_ostream &con, MatMap &mat_map, DFHack::Materials* mats, bool show_value) { MatMap ores; MatMap gems; MatMap rest; for (MatMap::const_iterator it = mat_map.begin(); it != mat_map.end(); ++it) { df::inorganic_raw *gloss = world->raws.inorganics[it->first]; if (gloss->material.isGem()) gems[it->first] = it->second; else if (gloss->isOre()) ores[it->first] = it->second; else rest[it->first] = it->second; } con << "Ores:" << std::endl; printMats<df::inorganic_raw, std::greater>(con, ores, world->raws.inorganics, show_value); con << "Gems:" << std::endl; printMats<df::inorganic_raw, std::greater>(con, gems, world->raws.inorganics, show_value); con << "Other vein stone:" << std::endl; printMats<df::inorganic_raw, std::greater>(con, rest, world->raws.inorganics, show_value); } command_result prospector (color_ostream &out, vector <string> & parameters); DFhackCExport command_result plugin_init ( color_ostream &out, std::vector <PluginCommand> &commands) { commands.push_back(PluginCommand( "prospect", "Show stats of available raw resources.", prospector, false, " Prints a big list of all the present minerals.\n" " By default, only the visible part of the map is scanned.\n" "Options:\n" " all - Scan the whole map, as if it was revealed.\n" " value - Show material value in the output. Most useful for gems.\n" " hell - Show the Z range of HFS tubes. Implies 'all'.\n" "Pre-embark estimate:\n" " If called during the embark selection screen, displays\n" " an estimate of layer stone availability. If the 'all'\n" " option is specified, also estimates veins.\n" " The estimate is computed either for 1 embark tile of the\n" " blinking biome, or for all tiles of the embark rectangle.\n" )); return CR_OK; } DFhackCExport command_result plugin_shutdown ( color_ostream &out ) { return CR_OK; } static coord2d biome_delta[] = { coord2d(-1,1), coord2d(0,1), coord2d(1,1), coord2d(-1,0), coord2d(0,0), coord2d(1,0), coord2d(-1,-1), coord2d(0,-1), coord2d(1,-1) }; struct EmbarkTileLayout { coord2d biome_off, biome_pos; df::region_map_entry *biome; df::world_geo_biome *geo_biome; int elevation, max_soil_depth; int min_z, base_z; std::map<int, float> penalty; }; static df::world_region_details *get_details(df::world_data *data, df::coord2d pos) { int d_idx = linear_index(data->region_details, &df::world_region_details::pos, pos); return vector_get(data->region_details, d_idx); } bool estimate_underground(color_ostream &out, EmbarkTileLayout &tile, df::world_region_details *details, int x, int y) { // Find actual biome int bv = clip_range(details->biome[x][y] & 15, 1, 9); tile.biome_off = biome_delta[bv-1]; df::world_data *data = world->world_data; int bx = clip_range(details->pos.x + tile.biome_off.x, 0, data->world_width-1); int by = clip_range(details->pos.y + tile.biome_off.y, 0, data->world_height-1); tile.biome_pos = coord2d(bx, by); tile.biome = &data->region_map[bx][by]; tile.geo_biome = df::world_geo_biome::find(tile.biome->geo_index); // Compute surface elevation tile.elevation = details->elevation[x][y]; tile.max_soil_depth = std::max((154-tile.elevation)/5,1); tile.penalty.clear(); // Special biome adjustments if (!tile.biome->flags.is_set(region_map_entry_flags::is_lake)) { // Mountain biome if (tile.biome->elevation >= 150) tile.max_soil_depth = 0; // Ocean biome else if (tile.biome->elevation < 100) { if (tile.elevation == 99) tile.elevation = 98; if (tile.geo_biome && (tile.geo_biome->unk1 == 4 || tile.geo_biome->unk1 == 5)) { auto b_details = get_details(data, tile.biome_pos); if (b_details && b_details->unk12e8 < 500) tile.max_soil_depth = 0; } } } tile.base_z = tile.elevation-1; auto &features = details->features[x][y]; // Collect global feature layer depths and apply penalties std::map<int, int> layer_bottom, layer_top; bool sea_found = false; for (size_t i = 0; i < features.size(); i++) { auto feature = features[i]; auto layer = df::world_underground_region::find(feature->layer); if (!layer || feature->min_z == -30000) continue; layer_bottom[layer->layer_depth] = feature->min_z; layer_top[layer->layer_depth] = feature->max_z; tile.base_z = std::min(tile.base_z, (int)feature->min_z); float penalty = 1.0f; switch (layer->type) { case df::world_underground_region::Cavern: penalty = 0.75f; break; case df::world_underground_region::MagmaSea: sea_found = true; tile.min_z = feature->min_z; for (int i = feature->min_z; i <= feature->max_z; i++) tile.penalty[i] = 0.2 + 0.6f*(i-feature->min_z)/(feature->max_z-feature->min_z+1); break; case df::world_underground_region::Underworld: penalty = 0.0f; break; } if (penalty != 1.0f) { for (int i = feature->min_z; i <= feature->max_z; i++) tile.penalty[i] = penalty; } } if (!sea_found) { out.printerr("Could not find magma sea; depth may be incorrect.\n"); tile.min_z = tile.base_z; } // Scan for big local features and apply their penalties for (size_t i = 0; i < features.size(); i++) { auto feature = features[i]; auto lfeature = Maps::getLocalInitFeature(details->pos, feature->feature_idx); if (!lfeature) continue; switch (lfeature->getType()) { case feature_type::pit: case feature_type::magma_pool: case feature_type::volcano: for (int i = layer_bottom[lfeature->end_depth]; i <= layer_top[lfeature->start_depth]; i++) tile.penalty[i] = std::min(0.4f, map_find(tile.penalty, i, 1.0f)); break; default: break; } } return true; } void add_materials(EmbarkTileLayout &tile, matdata &data, float amount, int min_z, int max_z) { for (int z = min_z; z <= max_z; z++) data.add(z, int(map_find(tile.penalty, z, 1)*amount)); } bool estimate_materials(color_ostream &out, EmbarkTileLayout &tile, MatMap &layerMats, MatMap &veinMats) { using namespace geo_layer_type; df::world_geo_biome *geo_biome = tile.geo_biome; if (!geo_biome) { out.printerr("Region geo-biome not found: (%d,%d)\n", tile.biome_pos.x, tile.biome_pos.y); return false; } // soil depth increases by 1 every 5 levels below 150 unsigned nlayers = std::min<unsigned>(16, geo_biome->layers.size()); int soil_size = 0; for (unsigned i = 0; i < nlayers; i++) { auto layer = geo_biome->layers[i]; if (layer->type == SOIL || layer->type == SOIL_SAND) soil_size += layer->top_height - layer->bottom_height + 1; } // Compute shifts for layers in the stack int soil_erosion = soil_size - std::min(soil_size,tile.max_soil_depth); int layer_shift[16]; int cur_shift = tile.elevation+soil_erosion-1; for (unsigned i = 0; i < nlayers; i++) { auto layer = geo_biome->layers[i]; layer_shift[i] = cur_shift; if (layer->type == SOIL || layer->type == SOIL_SAND) { int size = layer->top_height - layer->bottom_height + 1; // This is to replicate the behavior of a probable bug in the // map generation code: if a layer is partially eroded, the // removed levels are in fact transferred to the layer below, // because unlike the case of removing the whole layer, the code // does not execute a loop to shift the lower part of the stack up. if (size > soil_erosion) cur_shift -= soil_erosion; soil_erosion -= std::min(soil_erosion, size); } } // Estimate amounts int last_bottom = tile.elevation; for (unsigned i = 0; i < nlayers; i++) { auto layer = geo_biome->layers[i]; int top_z = last_bottom-1; int bottom_z = std::max(layer->bottom_height + layer_shift[i], tile.min_z); if (i+1 == nlayers) // stretch layer if needed bottom_z = tile.min_z; if (top_z < bottom_z) continue; last_bottom = bottom_z; float layer_size = 48*48; int sums[ENUM_LAST_ITEM(inclusion_type)+1] = { 0 }; for (unsigned j = 0; j < layer->vein_mat.size(); j++) if (is_valid_enum_item<df::inclusion_type>(layer->vein_type[j])) sums[layer->vein_type[j]] += layer->vein_unk_38[j]; for (unsigned j = 0; j < layer->vein_mat.size(); j++) { // TODO: find out how to estimate the real density // this code assumes that vein_unk_38 is the weight // used when choosing the vein material float size = float(layer->vein_unk_38[j]); df::inclusion_type type = layer->vein_type[j]; switch (type) { case inclusion_type::VEIN: // 3 veins of 80 tiles avg size = size * 80 * 3 / sums[type]; break; case inclusion_type::CLUSTER: // 1 cluster of 700 tiles avg size = size * 700 * 1 / sums[type]; break; case inclusion_type::CLUSTER_SMALL: size = size * 6 * 7 / sums[type]; break; case inclusion_type::CLUSTER_ONE: size = size * 1 * 5 / sums[type]; break; default: // shouldn't actually happen size = 1; } layer_size -= size; add_materials(tile, veinMats[layer->vein_mat[j]], size, bottom_z, top_z); } add_materials(tile, layerMats[layer->mat_index], layer_size, bottom_z, top_z); } return true; } static command_result embark_prospector(color_ostream &out, df::viewscreen_choose_start_sitest *screen, bool showHidden, bool showValue) { if (!world || !world->world_data) { out.printerr("World data is not available.\n"); return CR_FAILURE; } df::world_data *data = world->world_data; coord2d cur_region = screen->location.region_pos; auto cur_details = get_details(data, cur_region); if (!cur_details) { out.printerr("Current region details are not available.\n"); return CR_FAILURE; } // Compute material maps MatMap layerMats; MatMap veinMats; matdata world_bottom; // Compute biomes std::map<coord2d, int> biomes; /*if (screen->biome_highlighted) { out.print("Processing one embark tile of biome F%d.\n\n", screen->biome_idx+1); biomes[screen->biome_rgn[screen->biome_idx]]++; }*/ for (int x = screen->location.embark_pos_min.x; x <= screen->location.embark_pos_max.x; x++) { for (int y = screen->location.embark_pos_min.y; y <= screen->location.embark_pos_max.y; y++) { EmbarkTileLayout tile; if (!estimate_underground(out, tile, cur_details, x, y) || !estimate_materials(out, tile, layerMats, veinMats)) return CR_FAILURE; world_bottom.add(tile.base_z, 0); world_bottom.add(tile.elevation-1, 0); } } // Print the report out << "Layer materials:" << std::endl; printMats<df::inorganic_raw, shallower>(out, layerMats, world->raws.inorganics, showValue); if (showHidden) { DFHack::Materials *mats = Core::getInstance().getMaterials(); printVeins(out, veinMats, mats, showValue); mats->Finish(); } out << "Embark depth: " << (world_bottom.upper_z-world_bottom.lower_z+1) << " "; printMatdata(out, world_bottom, true); out << std::endl << "Warning: the above data is only a very rough estimate." << std::endl; return CR_OK; } command_result prospector (color_ostream &con, vector <string> & parameters) { bool showHidden = false; bool showPlants = true; bool showSlade = true; bool showTemple = true; bool showValue = false; bool showTube = false; for(size_t i = 0; i < parameters.size();i++) { if (parameters[i] == "all") { showHidden = true; } else if (parameters[i] == "value") { showValue = true; } else if (parameters[i] == "hell") { showHidden = showTube = true; } else return CR_WRONG_USAGE; } CoreSuspender suspend; // Embark screen active: estimate using world geology data auto screen = Gui::getViewscreenByType<df::viewscreen_choose_start_sitest>(0); if (screen) return embark_prospector(con, screen, showHidden, showValue); if (!Maps::IsValid()) { con.printerr("Map is not available!\n"); return CR_FAILURE; } uint32_t x_max = 0, y_max = 0, z_max = 0; Maps::getSize(x_max, y_max, z_max); MapExtras::MapCache map; DFHack::Materials *mats = Core::getInstance().getMaterials(); DFHack::t_feature blockFeatureGlobal; DFHack::t_feature blockFeatureLocal; bool hasAquifer = false; bool hasDemonTemple = false; bool hasLair = false; MatMap baseMats; MatMap layerMats; MatMap veinMats; MatMap plantMats; MatMap treeMats; matdata liquidWater; matdata liquidMagma; matdata aquiferTiles; matdata tubeTiles; uint32_t vegCount = 0; for(uint32_t z = 0; z < z_max; z++) { for(uint32_t b_y = 0; b_y < y_max; b_y++) { for(uint32_t b_x = 0; b_x < x_max; b_x++) { // Get the map block df::coord2d blockCoord(b_x, b_y); MapExtras::Block *b = map.BlockAt(DFHack::DFCoord(b_x, b_y, z)); if (!b || !b->is_valid()) { continue; } // Find features b->GetGlobalFeature(&blockFeatureGlobal); b->GetLocalFeature(&blockFeatureLocal); int global_z = world->map.region_z + z; // Iterate over all the tiles in the block for(uint32_t y = 0; y < 16; y++) { for(uint32_t x = 0; x < 16; x++) { df::coord2d coord(x, y); df::tile_designation des = b->DesignationAt(coord); df::tile_occupancy occ = b->OccupancyAt(coord); // Skip hidden tiles if (!showHidden && des.bits.hidden) { continue; } // Check for aquifer if (des.bits.water_table) { hasAquifer = true; aquiferTiles.add(global_z); } // Check for lairs if (occ.bits.monster_lair) { hasLair = true; } // Check for liquid if (des.bits.flow_size) { if (des.bits.liquid_type == tile_liquid::Magma) liquidMagma.add(global_z); else liquidWater.add(global_z); } df::tiletype type = b->tiletypeAt(coord); df::tiletype_shape tileshape = tileShape(type); df::tiletype_material tilemat = tileMaterial(type); // We only care about these types switch (tileshape) { case tiletype_shape::WALL: case tiletype_shape::FORTIFICATION: break; case tiletype_shape::EMPTY: /* A heuristic: tubes inside adamantine have EMPTY:AIR tiles which still have feature_local set. Also check the unrevealed status, so as to exclude any holes mined by the player. */ if (tilemat == tiletype_material::AIR && des.bits.feature_local && des.bits.hidden && blockFeatureLocal.type == feature_type::deep_special_tube) { tubeTiles.add(global_z); } default: continue; } // Count the material type baseMats[tilemat].add(global_z); // Find the type of the tile switch (tilemat) { case tiletype_material::SOIL: case tiletype_material::STONE: layerMats[b->layerMaterialAt(coord)].add(global_z); break; case tiletype_material::MINERAL: veinMats[b->veinMaterialAt(coord)].add(global_z); break; case tiletype_material::FEATURE: if (blockFeatureLocal.type != -1 && des.bits.feature_local) { if (blockFeatureLocal.type == feature_type::deep_special_tube && blockFeatureLocal.main_material == 0) // stone { veinMats[blockFeatureLocal.sub_material].add(global_z); } else if (showTemple && blockFeatureLocal.type == feature_type::deep_surface_portal) { hasDemonTemple = true; } } if (showSlade && blockFeatureGlobal.type != -1 && des.bits.feature_global && blockFeatureGlobal.type == feature_type::feature_underworld_from_layer && blockFeatureGlobal.main_material == 0) // stone { layerMats[blockFeatureGlobal.sub_material].add(global_z); } break; case tiletype_material::LAVA_STONE: // TODO ? break; default: break; } } } // Check plants this way, as the other way wasn't getting them all // and we can check visibility more easily here if (showPlants) { auto block = Maps::getBlockColumn(b_x,b_y); vector<df::plant *> *plants = block ? &block->plants : NULL; if(plants) { for (PlantList::const_iterator it = plants->begin(); it != plants->end(); it++) { const df::plant & plant = *(*it); if (plant.pos.z != z) continue; df::coord2d loc(plant.pos.x, plant.pos.y); loc = loc % 16; if (showHidden || !b->DesignationAt(loc).bits.hidden) { if(plant.flags.bits.is_shrub) plantMats[plant.material].add(global_z); else treeMats[plant.material].add(global_z); } } } } // Block end } // block x // Clean uneeded memory map.trash(); } // block y } // z MatMap::const_iterator it; con << "Base materials:" << std::endl; for (it = baseMats.begin(); it != baseMats.end(); ++it) { con << std::setw(25) << ENUM_KEY_STR(tiletype_material,(df::tiletype_material)it->first) << " : " << it->second.count << std::endl; } if (liquidWater.count || liquidMagma.count) { con << std::endl << "Liquids:" << std::endl; if (liquidWater.count) { con << std::setw(25) << "WATER" << " : "; printMatdata(con, liquidWater); } if (liquidWater.count) { con << std::setw(25) << "MAGMA" << " : "; printMatdata(con, liquidMagma); } } con << std::endl << "Layer materials:" << std::endl; printMats<df::inorganic_raw, shallower>(con, layerMats, world->raws.inorganics, showValue); printVeins(con, veinMats, mats, showValue); if (showPlants) { con << "Shrubs:" << std::endl; printMats<df::plant_raw, std::greater>(con, plantMats, world->raws.plants.all, showValue); con << "Wood in trees:" << std::endl; printMats<df::plant_raw, std::greater>(con, treeMats, world->raws.plants.all, showValue); } if (hasAquifer) { con << "Has aquifer"; if (aquiferTiles.count) { con << " : "; printMatdata(con, aquiferTiles); } else con << std::endl; } if (showTube && tubeTiles.count) { con << "Has HFS tubes : "; printMatdata(con, tubeTiles); } if (hasDemonTemple) { con << "Has demon temple" << std::endl; } if (hasLair) { con << "Has lair" << std::endl; } // Cleanup mats->Finish(); con << std::endl; return CR_OK; }