// Produces a list of materials available on the map. // Options: // -a : show unrevealed tiles // -p : don't show plants // -s : don't show slade // -t : don't show demon temple //#include <cstdlib> #include <iostream> #include <iomanip> #include <map> #include <algorithm> #include <functional> #include <vector> using namespace std; #include "Core.h" #include "Console.h" #include "Export.h" #include "LuaTools.h" #include "PluginManager.h" #include "modules/Gui.h" #include "modules/MapCache.h" #include "MiscUtils.h" #include "DataDefs.h" #include "df/world.h" #include "df/world_data.h" #include "df/world_region_details.h" #include "df/world_region_feature.h" #include "df/world_geo_biome.h" #include "df/world_geo_layer.h" #include "df/world_underground_region.h" #include "df/feature_init.h" #include "df/region_map_entry.h" #include "df/inclusion_type.h" #include "df/viewscreen_choose_start_sitest.h" #include "df/plant.h" using namespace DFHack; using namespace df::enums; using df::coord2d; DFHACK_PLUGIN("prospector"); REQUIRE_GLOBAL(world); struct prospect_options { // whether to display help bool help = false; // whether to scan the whole map or just the unhidden tiles bool hidden = false; // whether to also show material values bool value = false; // whether to show adamantine tube z-levels bool tube = false; // which report sections to show bool summary = true; bool liquids = true; bool layers = true; bool features = true; bool ores = true; bool gems = true; bool veins = true; bool shrubs = true; bool trees = true; static struct_identity _identity; }; static const struct_field_info prospect_options_fields[] = { { struct_field_info::PRIMITIVE, "help", offsetof(prospect_options, help), &df::identity_traits<bool>::identity, 0, 0 }, { struct_field_info::PRIMITIVE, "hidden", offsetof(prospect_options, hidden), &df::identity_traits<bool>::identity, 0, 0 }, { struct_field_info::PRIMITIVE, "value", offsetof(prospect_options, value), &df::identity_traits<bool>::identity, 0, 0 }, { struct_field_info::PRIMITIVE, "tube", offsetof(prospect_options, tube), &df::identity_traits<bool>::identity, 0, 0 }, { struct_field_info::PRIMITIVE, "summary", offsetof(prospect_options, summary), &df::identity_traits<bool>::identity, 0, 0 }, { struct_field_info::PRIMITIVE, "liquids", offsetof(prospect_options, liquids), &df::identity_traits<bool>::identity, 0, 0 }, { struct_field_info::PRIMITIVE, "layers", offsetof(prospect_options, layers), &df::identity_traits<bool>::identity, 0, 0 }, { struct_field_info::PRIMITIVE, "features", offsetof(prospect_options, features), &df::identity_traits<bool>::identity, 0, 0 }, { struct_field_info::PRIMITIVE, "ores", offsetof(prospect_options, ores), &df::identity_traits<bool>::identity, 0, 0 }, { struct_field_info::PRIMITIVE, "gems", offsetof(prospect_options, gems), &df::identity_traits<bool>::identity, 0, 0 }, { struct_field_info::PRIMITIVE, "veins", offsetof(prospect_options, veins), &df::identity_traits<bool>::identity, 0, 0 }, { struct_field_info::PRIMITIVE, "shrubs", offsetof(prospect_options, shrubs), &df::identity_traits<bool>::identity, 0, 0 }, { struct_field_info::PRIMITIVE, "trees", offsetof(prospect_options, trees), &df::identity_traits<bool>::identity, 0, 0 }, { struct_field_info::END } }; struct_identity prospect_options::_identity(sizeof(prospect_options), &df::allocator_fn<prospect_options>, NULL, "prospect_options", NULL, prospect_options_fields); struct matdata { const static int invalid_z = -30000; matdata() { count = 0.0; lower_z = invalid_z; upper_z = invalid_z; } matdata (const matdata & copyme) { count = copyme.count; lower_z = copyme.lower_z; upper_z = copyme.upper_z; } float add(int z_level = invalid_z, float delta = 1.0) { count += delta; if(z_level != invalid_z) { if(lower_z == invalid_z || z_level < lower_z) { lower_z = z_level; } if(upper_z == invalid_z || z_level > upper_z) { upper_z = z_level; } } return count; } float count; int lower_z; int upper_z; }; bool operator>(const matdata & q1, const matdata & q2) { return q1.count > q2.count; } template<typename Tp = matdata > struct shallower { bool operator()(const Tp& top, const Tp& bottom) const { float topavg = (top.lower_z + top.upper_z)/2.0f; float btmavg = (bottom.lower_z + bottom.upper_z)/2.0f; return topavg > btmavg; } }; typedef std::map<int16_t, matdata> MatMap; typedef std::vector< pair<int16_t, matdata> > MatSorter; typedef std::vector<df::plant *> PlantList; #define TO_PTR_VEC(obj_vec, ptr_vec) \ ptr_vec.clear(); \ for (size_t i = 0; i < obj_vec.size(); i++) \ ptr_vec.push_back(&obj_vec[i]) template<template <typename> class P = std::greater > struct compare_pair_second { template<class T1, class T2> bool operator()(const std::pair<T1, T2>& left, const std::pair<T1, T2>& right) { return P<T2>()(left.second, right.second); } }; static void printMatdata(color_ostream &con, const matdata &data, bool only_z = false) { if (!only_z) con << std::setw(9) << int(data.count); if(data.lower_z != data.upper_z) con <<" Z:" << std::setw(4) << data.lower_z << ".." << data.upper_z << std::endl; else con <<" Z:" << std::setw(4) << data.lower_z << std::endl; } static int getValue(const df::inorganic_raw &info) { return info.material.material_value; } static int getValue(const df::plant_raw &info) { return info.value; } template <typename T, template <typename> class P> void printMats(color_ostream &con, MatMap &mat, std::vector<T*> &materials, const prospect_options &options) { unsigned int total = 0; MatSorter sorting_vector; for (MatMap::const_iterator it = mat.begin(); it != mat.end(); ++it) { sorting_vector.push_back(*it); } std::sort(sorting_vector.begin(), sorting_vector.end(), compare_pair_second<P>()); for (MatSorter::const_iterator it = sorting_vector.begin(); it != sorting_vector.end(); ++it) { if(size_t(it->first) >= materials.size()) { con << "Bad index: " << it->first << " out of " << materials.size() << endl; continue; } T* mat = materials[it->first]; // Somewhat of a hack, but it works because df::inorganic_raw and df::plant_raw both have a field named "id" con << std::setw(25) << mat->id << " : "; if (options.value) con << std::setw(3) << getValue(*mat) << " : "; printMatdata(con, it->second); total += it->second.count; } con << ">>> TOTAL = " << total << std::endl << std::endl; } void printVeins(color_ostream &con, MatMap &mat_map, const prospect_options &options) { MatMap ores; MatMap gems; MatMap rest; for (const auto &kv : mat_map) { df::inorganic_raw *gloss = vector_get(world->raws.inorganics, kv.first); if (!gloss) { con.printerr("invalid material gloss: %hi\n", kv.first); continue; } if (gloss->material.isGem()) gems[kv.first] = kv.second; else if (gloss->isOre()) ores[kv.first] = kv.second; else rest[kv.first] = kv.second; } if (options.ores) { con << "Ores:" << std::endl; printMats<df::inorganic_raw, std::greater>(con, ores, world->raws.inorganics, options); } if (options.gems) { con << "Gems:" << std::endl; printMats<df::inorganic_raw, std::greater>(con, gems, world->raws.inorganics, options); } if (options.veins) { con << "Other vein stone:" << std::endl; printMats<df::inorganic_raw, std::greater>(con, rest, world->raws.inorganics, options); } } command_result prospector (color_ostream &out, vector <string> & parameters); DFhackCExport command_result plugin_init ( color_ostream &out, std::vector <PluginCommand> &commands) { commands.push_back(PluginCommand( "prospect", "Show raw resources available on the map.", prospector)); return CR_OK; } DFhackCExport command_result plugin_shutdown ( color_ostream &out ) { return CR_OK; } static coord2d biome_delta[] = { coord2d(-1,1), coord2d(0,1), coord2d(1,1), coord2d(-1,0), coord2d(0,0), coord2d(1,0), coord2d(-1,-1), coord2d(0,-1), coord2d(1,-1) }; struct EmbarkTileLayout { coord2d biome_off, biome_pos; df::region_map_entry *biome; df::world_geo_biome *geo_biome; int elevation, max_soil_depth; int min_z, base_z; std::map<int, float> penalty; }; static df::world_region_details *get_details(df::world_data *data, df::coord2d pos) { int d_idx = linear_index(data->region_details, &df::world_region_details::pos, pos); return vector_get(data->region_details, d_idx); } bool estimate_underground(color_ostream &out, EmbarkTileLayout &tile, df::world_region_details *details, int x, int y) { if (x < 0 || y < 0 || x > 15 || y > 15) { out.printerr("Invalid embark coordinates: x=%i, y=%i\n", x, y); return false; } // Find actual biome int bv = clip_range(details->biome[x][y] & 15, 1, 9); tile.biome_off = biome_delta[bv-1]; df::world_data *data = world->world_data; int bx = clip_range(details->pos.x + tile.biome_off.x, 0, data->world_width-1); int by = clip_range(details->pos.y + tile.biome_off.y, 0, data->world_height-1); tile.biome_pos = coord2d(bx, by); tile.biome = &data->region_map[bx][by]; tile.geo_biome = df::world_geo_biome::find(tile.biome->geo_index); // Compute surface elevation tile.elevation = details->elevation[x][y]; tile.max_soil_depth = std::max((154-tile.elevation)/5,1); tile.penalty.clear(); // Special biome adjustments if (!tile.biome->flags.is_set(region_map_entry_flags::is_lake)) { // Mountain biome if (tile.biome->elevation >= 150) tile.max_soil_depth = 0; // Ocean biome else if (tile.biome->elevation < 100) { if (tile.elevation == 99) tile.elevation = 98; if (tile.geo_biome && (tile.geo_biome->unk1 == 4 || tile.geo_biome->unk1 == 5)) { auto b_details = get_details(data, tile.biome_pos); if (b_details && b_details->unk12e8 < 500) tile.max_soil_depth = 0; } } } tile.base_z = tile.elevation-1; auto &features = details->features[x][y]; // Collect global feature layer depths and apply penalties std::map<int, int> layer_bottom, layer_top; bool sea_found = false; for (size_t i = 0; i < features.size(); i++) { auto feature = features[i]; auto layer = df::world_underground_region::find(feature->layer); if (!layer || feature->min_z == -30000) continue; layer_bottom[layer->layer_depth] = feature->min_z; layer_top[layer->layer_depth] = feature->max_z; tile.base_z = std::min(tile.base_z, (int)feature->min_z); float penalty = 1.0f; switch (layer->type) { case df::world_underground_region::Cavern: penalty = 0.75f; break; case df::world_underground_region::MagmaSea: sea_found = true; tile.min_z = feature->min_z; for (int i = feature->min_z; i <= feature->max_z; i++) tile.penalty[i] = 0.2 + 0.6f*(i-feature->min_z)/(feature->max_z-feature->min_z+1); break; case df::world_underground_region::Underworld: penalty = 0.0f; break; } if (penalty != 1.0f) { for (int i = feature->min_z; i <= feature->max_z; i++) tile.penalty[i] = penalty; } } if (!sea_found) { out.printerr("Could not find magma sea; depth may be incorrect.\n"); tile.min_z = tile.base_z; } // Scan for big local features and apply their penalties for (size_t i = 0; i < features.size(); i++) { auto feature = features[i]; auto lfeature = Maps::getLocalInitFeature(details->pos, feature->feature_idx); if (!lfeature) continue; switch (lfeature->getType()) { case feature_type::pit: case feature_type::magma_pool: case feature_type::volcano: for (int i = layer_bottom[lfeature->end_depth]; i <= layer_top[lfeature->start_depth]; i++) tile.penalty[i] = std::min(0.4f, map_find(tile.penalty, i, 1.0f)); break; default: break; } } return true; } void add_materials(EmbarkTileLayout &tile, matdata &data, float amount, int min_z, int max_z) { for (int z = min_z; z <= max_z; z++) data.add(z, map_find(tile.penalty, z, 1) * amount); } bool estimate_materials(color_ostream &out, EmbarkTileLayout &tile, MatMap &layerMats, MatMap &veinMats) { using namespace geo_layer_type; df::world_geo_biome *geo_biome = tile.geo_biome; if (!geo_biome) { out.printerr("Region geo-biome not found: (%d,%d)\n", tile.biome_pos.x, tile.biome_pos.y); return false; } // soil depth increases by 1 every 5 levels below 150 unsigned nlayers = std::min<unsigned>(16, geo_biome->layers.size()); int soil_size = 0; for (unsigned i = 0; i < nlayers; i++) { auto layer = geo_biome->layers[i]; if (layer->type == SOIL || layer->type == SOIL_SAND) soil_size += layer->top_height - layer->bottom_height + 1; } // Compute shifts for layers in the stack int soil_erosion = soil_size - std::min(soil_size,tile.max_soil_depth); int layer_shift[16]; int cur_shift = tile.elevation+soil_erosion-1; for (unsigned i = 0; i < nlayers; i++) { auto layer = geo_biome->layers[i]; layer_shift[i] = cur_shift; if (layer->type == SOIL || layer->type == SOIL_SAND) { int size = layer->top_height - layer->bottom_height + 1; // This is to replicate the behavior of a probable bug in the // map generation code: if a layer is partially eroded, the // removed levels are in fact transferred to the layer below, // because unlike the case of removing the whole layer, the code // does not execute a loop to shift the lower part of the stack up. if (size > soil_erosion) cur_shift -= soil_erosion; soil_erosion -= std::min(soil_erosion, size); } } // Estimate amounts int last_bottom = tile.elevation; for (unsigned i = 0; i < nlayers; i++) { auto layer = geo_biome->layers[i]; int top_z = last_bottom-1; int bottom_z = std::max(layer->bottom_height + layer_shift[i], tile.min_z); if (i+1 == nlayers) // stretch layer if needed bottom_z = tile.min_z; if (top_z < bottom_z) continue; last_bottom = bottom_z; float layer_size = 48*48; int sums[ENUM_LAST_ITEM(inclusion_type)+1] = { 0 }; // Small clusters actually belong to different groups depending on whether they are enclosed by layers, clusters, or veins. // Similarly, veins belong to different groups depending on whether they are enclosed by layers or clusters. // However, these fine details probably drown in the uncertainty inherent in estimating amounts based on RNG distributed proportions. for (unsigned j = 0; j < layer->vein_mat.size(); j++) if (is_valid_enum_item<df::inclusion_type>(layer->vein_type[j])) sums[layer->vein_type[j]] += layer->vein_unk_38[j]; for (unsigned j = 0; j < layer->vein_mat.size(); j++) { // TODO: find out how to estimate the real density // this code assumes that vein_unk_38 is the weight // used when choosing the vein material float size = float(layer->vein_unk_38[j]); df::inclusion_type type = layer->vein_type[j]; // There doesn't seem to be any relation between mineral scarcity and the number or size of clusters and veins, // apart from when it leads to them being completely absent, e.g. either there are 10 small clusters or there are none. switch (type) { case inclusion_type::VEIN: if (layer->vein_nested_in[j] == -1) { // Veins directly in the layer, i.e. the normal case // 2-4 veins with a guessed average of 100 tiles each size = size * 300 / sums[type]; } else { // Should only be veins in clusters // 1 vein with a very shaky guessed average of 50 tiles // TODO: Veins in clusters do not share the pool with normal veins but are added on top of it, but this will have to do for now size = size * 50 / sums[type]; } break; case inclusion_type::CLUSTER: // 1 cluster of 750 tiles avg. The average size can be refined. size = size * 750 / sums[type]; break; case inclusion_type::CLUSTER_SMALL: if (layer->vein_nested_in[j] == -1 || layer->vein_type[layer->vein_nested_in[j]] != inclusion_type::VEIN) { // Small clusters in the layer and in clusters share a common pool of 10 clusters // An estimate is that the average sum of these is 52, but there is room for refinement size = size * 52 / sums[type]; } else { // A very shaky guess of an average of 3 clusters with 15.6->16 tiles // TODO: Small clusters in veins appear in addition to the regular set, but this will have to do for now size = size * 16 / sums[type]; } break; case inclusion_type::CLUSTER_ONE: if (layer->vein_nested_in[j] == -1 || layer->vein_type[layer->vein_nested_in[j]] != inclusion_type::CLUSTER_SMALL) { // Doesn't happen with vanilla raws, so this is just a wild guess that it might happen 5 times size = size * 5 / sums[type]; } else { // Vanilla only has single clusters nested in small ones. We weigh the estimate based on the proportion of // the small clusters out of the 10 standard ones. Note that this does not distinguish between enclosing small // clusters that are actually in standard pool of 10 and those in veins (TODO) size = size * layer->vein_unk_38[layer->vein_nested_in[j]] * 10 / sums[inclusion_type::CLUSTER_SMALL] / sums[type]; } break; default: // shouldn't actually happen size = 1; } layer_size -= size; add_materials(tile, veinMats[layer->vein_mat[j]], size, bottom_z, top_z); } add_materials(tile, layerMats[layer->mat_index], layer_size, bottom_z, top_z); } return true; } static command_result embark_prospector(color_ostream &out, df::viewscreen_choose_start_sitest *screen, const prospect_options &options) { if (!world || !world->world_data) { out.printerr("World data is not available.\n"); return CR_FAILURE; } df::world_data *data = world->world_data; coord2d cur_region = screen->location.region_pos; auto cur_details = get_details(data, cur_region); if (!cur_details) { out.printerr("Current region details are not available.\n"); return CR_FAILURE; } // Compute material maps MatMap layerMats; MatMap veinMats; matdata world_bottom; // Compute biomes std::map<coord2d, int> biomes; for (int x = screen->location.embark_pos_min.x; x <= 15 && x <= screen->location.embark_pos_max.x; x++) { for (int y = screen->location.embark_pos_min.y; y <= 15 && y <= screen->location.embark_pos_max.y; y++) { EmbarkTileLayout tile; if (!estimate_underground(out, tile, cur_details, x, y) || !estimate_materials(out, tile, layerMats, veinMats)) return CR_FAILURE; world_bottom.add(tile.base_z, 0); world_bottom.add(tile.elevation-1, 0); } } // Print the report if (options.layers) { out << "Layer materials:" << std::endl; printMats<df::inorganic_raw, shallower>(out, layerMats, world->raws.inorganics, options); } if (options.hidden) { DFHack::Materials *mats = Core::getInstance().getMaterials(); printVeins(out, veinMats, options); mats->Finish(); } out << "Embark depth: " << (world_bottom.upper_z-world_bottom.lower_z+1) << " "; printMatdata(out, world_bottom, true); out << std::endl << "Warning: the above data is only a very rough estimate." << std::endl; return CR_OK; } static command_result map_prospector(color_ostream &con, const prospect_options &options) { if (!Maps::IsValid()) { con.printerr("Map is not available!\n"); return CR_FAILURE; } uint32_t x_max = 0, y_max = 0, z_max = 0; Maps::getSize(x_max, y_max, z_max); MapExtras::MapCache map; DFHack::Materials *mats = Core::getInstance().getMaterials(); DFHack::t_feature blockFeatureGlobal; DFHack::t_feature blockFeatureLocal; bool hasDemonTemple = false; bool hasLair = false; MatMap baseMats; MatMap layerMats; MatMap veinMats; MatMap plantMats; MatMap treeMats; matdata liquidWater; matdata liquidMagma; matdata aquiferTiles; matdata tubeTiles; for(uint32_t z = 0; z < z_max; z++) { for(uint32_t b_y = 0; b_y < y_max; b_y++) { for(uint32_t b_x = 0; b_x < x_max; b_x++) { // Get the map block df::coord2d blockCoord(b_x, b_y); MapExtras::Block *b = map.BlockAt(DFHack::DFCoord(b_x, b_y, z)); if (!b || !b->is_valid()) { continue; } // Find features b->GetGlobalFeature(&blockFeatureGlobal); b->GetLocalFeature(&blockFeatureLocal); int global_z = world->map.region_z + z; // Iterate over all the tiles in the block for(uint32_t y = 0; y < 16; y++) { for(uint32_t x = 0; x < 16; x++) { df::coord2d coord(x, y); df::tile_designation des = b->DesignationAt(coord); df::tile_occupancy occ = b->OccupancyAt(coord); // Skip hidden tiles if (!options.hidden && des.bits.hidden) { continue; } // Check for aquifer if (des.bits.water_table) { aquiferTiles.add(global_z); } // Check for lairs if (occ.bits.monster_lair) { hasLair = true; } // Check for liquid if (des.bits.flow_size) { if (des.bits.liquid_type == tile_liquid::Magma) liquidMagma.add(global_z); else liquidWater.add(global_z); } df::tiletype type = b->tiletypeAt(coord); df::tiletype_shape tileshape = tileShape(type); df::tiletype_material tilemat = tileMaterial(type); // We only care about these types switch (tileshape) { case tiletype_shape::WALL: case tiletype_shape::FORTIFICATION: break; case tiletype_shape::EMPTY: /* A heuristic: tubes inside adamantine have EMPTY:AIR tiles which still have feature_local set. Also check the unrevealed status, so as to exclude any holes mined by the player. */ if (tilemat == tiletype_material::AIR && des.bits.feature_local && des.bits.hidden && blockFeatureLocal.type == feature_type::deep_special_tube) { tubeTiles.add(global_z); } default: continue; } // Count the material type baseMats[tilemat].add(global_z); // Find the type of the tile switch (tilemat) { case tiletype_material::SOIL: case tiletype_material::STONE: layerMats[b->layerMaterialAt(coord)].add(global_z); break; case tiletype_material::MINERAL: veinMats[b->veinMaterialAt(coord)].add(global_z); break; case tiletype_material::FEATURE: if (blockFeatureLocal.type != -1 && des.bits.feature_local) { if (blockFeatureLocal.type == feature_type::deep_special_tube && blockFeatureLocal.main_material == 0) // stone { veinMats[blockFeatureLocal.sub_material].add(global_z); } else if (blockFeatureLocal.type == feature_type::deep_surface_portal) { hasDemonTemple = true; } } if (blockFeatureGlobal.type != -1 && des.bits.feature_global && blockFeatureGlobal.type == feature_type::underworld_from_layer && blockFeatureGlobal.main_material == 0) // stone { layerMats[blockFeatureGlobal.sub_material].add(global_z); } break; case tiletype_material::LAVA_STONE: // TODO ? break; default: break; } } } // Check plants this way, as the other way wasn't getting them all // and we can check visibility more easily here if (options.shrubs) { auto block = Maps::getBlockColumn(b_x,b_y); vector<df::plant *> *plants = block ? &block->plants : NULL; if(plants) { for (PlantList::const_iterator it = plants->begin(); it != plants->end(); it++) { const df::plant & plant = *(*it); if (uint32_t(plant.pos.z) != z) continue; df::coord2d loc(plant.pos.x, plant.pos.y); loc = loc % 16; if (options.hidden || !b->DesignationAt(loc).bits.hidden) { if(plant.flags.bits.is_shrub) plantMats[plant.material].add(global_z); else treeMats[plant.material].add(global_z); } } } } // Block end } // block x // Clean uneeded memory map.trash(); } // block y } // z MatMap::const_iterator it; if (options.summary) { con << "Base materials:" << std::endl; for (it = baseMats.begin(); it != baseMats.end(); ++it) { con << std::setw(25) << ENUM_KEY_STR(tiletype_material,(df::tiletype_material)it->first) << " : " << it->second.count << std::endl; } con << std::endl; } if (options.liquids && (liquidWater.count || liquidMagma.count)) { con << "Liquids:" << std::endl; if (liquidWater.count) { con << std::setw(25) << "WATER" << " : "; printMatdata(con, liquidWater); } if (liquidWater.count) { con << std::setw(25) << "MAGMA" << " : "; printMatdata(con, liquidMagma); } con << std::endl; } if (options.layers) { con << "Layer materials:" << std::endl; printMats<df::inorganic_raw, shallower>(con, layerMats, world->raws.inorganics, options); } if (options.features) { con << "Features:" << std::endl; bool hasFeature = false; if (aquiferTiles.count) { con << std::setw(25) << "Has aquifer" << " : "; if (options.value) con << " "; printMatdata(con, aquiferTiles); hasFeature = true; } if (options.tube && tubeTiles.count) { con << std::setw(25) << "Has HFS tubes" << " : "; if (options.value) con << " "; printMatdata(con, tubeTiles, true); hasFeature = true; } if (hasDemonTemple) { con << std::setw(25) << "Has demon temple" << std::endl; hasFeature = true; } if (hasLair) { con << std::setw(25) << "Has lair" << std::endl; hasFeature = true; } if (!hasFeature) con << std::setw(25) << "None" << std::endl; con << std::endl; } printVeins(con, veinMats, options); if (options.shrubs) { con << "Shrubs:" << std::endl; printMats<df::plant_raw, std::greater>(con, plantMats, world->raws.plants.all, options); } if (options.trees) { con << "Wood in trees:" << std::endl; printMats<df::plant_raw, std::greater>(con, treeMats, world->raws.plants.all, options); } // Cleanup mats->Finish(); return CR_OK; } static bool get_options(color_ostream &out, prospect_options &opts, const vector<string> ¶meters) { auto L = Lua::Core::State; Lua::StackUnwinder top(L); if (!lua_checkstack(L, parameters.size() + 2) || !Lua::PushModulePublic( out, L, "plugins.prospector", "parse_commandline")) { out.printerr("Failed to load prospector Lua code\n"); return false; } Lua::Push(L, &opts); for (const string ¶m : parameters) Lua::Push(L, param); if (!Lua::SafeCall(out, L, parameters.size() + 1, 0)) return false; return true; } command_result prospector(color_ostream &con, vector <string> & parameters) { CoreSuspender suspend; prospect_options options; if (!get_options(con, options, parameters) || options.help) return CR_WRONG_USAGE; // Embark screen active: estimate using world geology data auto screen = Gui::getViewscreenByType<df::viewscreen_choose_start_sitest>(0); return screen ? embark_prospector(con, screen, options) : map_prospector(con, options); }