#include "plannedbuilding.h" #include "buildingplan.h" #include "Debug.h" #include "modules/Items.h" #include "modules/Job.h" #include "modules/Maps.h" #include "modules/Materials.h" #include "df/building_design.h" #include "df/item.h" #include "df/item_slabst.h" #include "df/job.h" #include "df/map_block.h" #include "df/world.h" #include using std::map; using std::string; using std::unordered_map; namespace DFHack { DBG_EXTERN(buildingplan, cycle); } using namespace DFHack; struct BadFlags { uint32_t whole; BadFlags() { df::item_flags flags; #define F(x) flags.bits.x = true; F(dump); F(forbid); F(garbage_collect); F(hostile); F(on_fire); F(rotten); F(trader); F(in_building); F(construction); F(in_job); F(owned); F(in_chest); F(removed); F(encased); F(spider_web); #undef F whole = flags.whole; } }; // This is tricky. we want to choose an item that can be brought to the job site, but that's not // necessarily the same as job->pos. it could be many tiles off in any direction (e.g. for bridges), or // up or down (e.g. for stairs). For now, just return if the item is on a walkable tile. static bool isAccessible(color_ostream& out, df::item* item) { df::coord item_pos = Items::getPosition(item); df::map_block* block = Maps::getTileBlock(item_pos); bool is_walkable = false; if (block) { uint16_t walkability_group = index_tile(block->walkable, item_pos); is_walkable = walkability_group != 0; TRACE(cycle, out).print("item %d in walkability_group %u at (%d,%d,%d) is %saccessible from job site\n", item->id, walkability_group, item_pos.x, item_pos.y, item_pos.z, is_walkable ? "(probably) " : "not "); } return is_walkable; } bool itemPassesScreen(color_ostream& out, df::item* item) { static const BadFlags bad_flags; return !(item->flags.whole & bad_flags.whole) && !item->isAssignedToStockpile() && isAccessible(out, item); } bool matchesHeatSafety(int16_t mat_type, int32_t mat_index, HeatSafety heat) { if (heat == HEAT_SAFETY_ANY) return true; MaterialInfo minfo(mat_type, mat_index); df::job_item_flags2 ok; df::job_item_flags2 mask; minfo.getMatchBits(ok, mask); if (heat >= HEAT_SAFETY_MAGMA) return ok.bits.magma_safe; if (heat == HEAT_SAFETY_FIRE) return ok.bits.fire_safe || ok.bits.magma_safe; return false; } bool matchesFilters(df::item * item, const df::job_item * jitem, HeatSafety heat, const ItemFilter &item_filter, const std::set &specials) { // check the properties that are not checked by Job::isSuitableItem() if (jitem->item_type > -1 && jitem->item_type != item->getType()) return false; if (jitem->item_subtype > -1 && jitem->item_subtype != item->getSubtype()) return false; if (jitem->flags2.bits.building_material && !item->isBuildMat()) return false; if ((jitem->flags1.bits.empty || jitem->flags2.bits.lye_milk_free)) { auto gref = Items::getGeneralRef(item, df::general_ref_type::CONTAINS_ITEM); if (gref) { if (jitem->flags1.bits.empty) return false; if (auto contained_item = gref->getItem(); contained_item) { MaterialInfo mi; mi.decode(contained_item); if (mi.getToken() != "WATER") return false; } } } if (jitem->metal_ore > -1 && !item->isMetalOre(jitem->metal_ore)) return false; if (jitem->has_tool_use > df::tool_uses::NONE && !item->hasToolUse(jitem->has_tool_use)) return false; if (item->getType() == df::item_type::SLAB && specials.count("engraved") && static_cast(item)->engraving_type != df::slab_engraving_type::Memorial) return false; if (item->getType() == df::item_type::CAGE && specials.count("empty") && (Items::getGeneralRef(item, df::general_ref_type::CONTAINS_UNIT) || Items::getGeneralRef(item, df::general_ref_type::CONTAINS_ITEM))) return false; if (!matchesHeatSafety(item->getMaterial(), item->getMaterialIndex(), heat)) return false; return Job::isSuitableItem( jitem, item->getType(), item->getSubtype()) && Job::isSuitableMaterial( jitem, item->getMaterial(), item->getMaterialIndex(), item->getType()) && item_filter.matches(item); } bool isJobReady(color_ostream &out, const std::vector &jitems) { int needed_items = 0; for (auto job_item : jitems) { needed_items += job_item->quantity; } if (needed_items) { DEBUG(cycle,out).print("building needs %d more item(s)\n", needed_items); return false; } return true; } static bool job_item_idx_lt(df::job_item_ref *a, df::job_item_ref *b) { // we want the items in the opposite order of the filters return a->job_item_idx > b->job_item_idx; } // this function does not remove the job_items since their quantity fields are // now all at 0, so there is no risk of having extra items attached. we don't // remove them to keep the "finalize with buildingplan active" path as similar // as possible to the "finalize with buildingplan disabled" path. void finalizeBuilding(color_ostream &out, df::building *bld, bool unsuspend_on_finalize) { DEBUG(cycle,out).print("finalizing building %d\n", bld->id); auto job = bld->jobs[0]; // sort the items so they get added to the structure in the correct order std::sort(job->items.begin(), job->items.end(), job_item_idx_lt); // derive the material properties of the building and job from the first // applicable item. if any boulders are involved, it makes the whole // structure "rough". bool rough = false; for (auto attached_item : job->items) { df::item *item = attached_item->item; rough = rough || item->getType() == df::item_type::BOULDER; if (bld->mat_type == -1) { bld->mat_type = item->getMaterial(); job->mat_type = bld->mat_type; } if (bld->mat_index == -1) { bld->mat_index = item->getMaterialIndex(); job->mat_index = bld->mat_index; } } if (bld->needsDesign()) { auto act = (df::building_actual *)bld; if (!act->design) act->design = new df::building_design(); act->design->flags.bits.rough = rough; } // we're good to go! if (unsuspend_on_finalize) { job->flags.bits.suspend = false; Job::checkBuildingsNow(); } } static df::building * popInvalidTasks(color_ostream &out, Bucket &task_queue, unordered_map &planned_buildings) { while (!task_queue.empty()) { auto & task = task_queue.front(); auto id = task.first; if (planned_buildings.count(id) > 0) { auto bld = planned_buildings.at(id).getBuildingIfValidOrRemoveIfNot(out); if (bld && bld->jobs[0]->job_items[task.second]->quantity) return bld; } DEBUG(cycle,out).print("discarding invalid task: bld=%d, job_item_idx=%d\n", id, task.second); task_queue.pop_front(); } return NULL; } static void doVector(color_ostream &out, df::job_item_vector_id vector_id, map &buckets, unordered_map &planned_buildings, bool unsuspend_on_finalize) { auto other_id = ENUM_ATTR(job_item_vector_id, other, vector_id); auto item_vector = df::global::world->items.other[other_id]; DEBUG(cycle,out).print("matching %zu item(s) in vector %s against %zu filter bucket(s)\n", item_vector.size(), ENUM_KEY_STR(job_item_vector_id, vector_id).c_str(), buckets.size()); for (auto item_it = item_vector.rbegin(); item_it != item_vector.rend(); ++item_it) { auto item = *item_it; if (!itemPassesScreen(out, item)) continue; for (auto bucket_it = buckets.begin(); bucket_it != buckets.end(); ) { TRACE(cycle,out).print("scanning bucket: %s/%s\n", ENUM_KEY_STR(job_item_vector_id, vector_id).c_str(), bucket_it->first.c_str()); auto & task_queue = bucket_it->second; auto bld = popInvalidTasks(out, task_queue, planned_buildings); if (!bld) { DEBUG(cycle,out).print("removing empty bucket: %s/%s; %zu bucket(s) left\n", ENUM_KEY_STR(job_item_vector_id, vector_id).c_str(), bucket_it->first.c_str(), buckets.size() - 1); bucket_it = buckets.erase(bucket_it); continue; } auto & task = task_queue.front(); auto id = task.first; auto job = bld->jobs[0]; auto & jitems = job->job_items; const size_t num_filters = jitems.size(); auto filter_idx = task.second; const int rev_filter_idx = num_filters - (filter_idx+1); auto &pb = planned_buildings.at(id); if (matchesFilters(item, jitems[filter_idx], pb.heat_safety, pb.item_filters[rev_filter_idx], pb.specials) && Job::attachJobItem(job, item, df::job_item_ref::Hauled, filter_idx)) { MaterialInfo material; material.decode(item); ItemTypeInfo item_type; item_type.decode(item); DEBUG(cycle,out).print("attached %s %s to filter %d for %s(%d): %s/%s\n", material.toString().c_str(), item_type.toString().c_str(), filter_idx, ENUM_KEY_STR(building_type, bld->getType()).c_str(), id, ENUM_KEY_STR(job_item_vector_id, vector_id).c_str(), bucket_it->first.c_str()); // keep quantity aligned with the actual number of remaining // items so if buildingplan is turned off, the building will // be completed with the correct number of items. --jitems[filter_idx]->quantity; task_queue.pop_front(); if (isJobReady(out, jitems)) { finalizeBuilding(out, bld, unsuspend_on_finalize); planned_buildings.at(id).remove(out); } if (task_queue.empty()) { DEBUG(cycle,out).print( "removing empty item bucket: %s/%s; %zu left\n", ENUM_KEY_STR(job_item_vector_id, vector_id).c_str(), bucket_it->first.c_str(), buckets.size() - 1); buckets.erase(bucket_it); } // we found a home for this item; no need to look further break; } ++bucket_it; } if (buckets.empty()) break; } } struct VectorsToScanLast { std::vector vectors; VectorsToScanLast() { // order is important here. we want to match boulders before wood and // everything before bars. blocks are not listed here since we'll have // already scanned them when we did the first pass through the buckets. vectors.push_back(df::job_item_vector_id::BOULDER); vectors.push_back(df::job_item_vector_id::WOOD); vectors.push_back(df::job_item_vector_id::BAR); vectors.push_back(df::job_item_vector_id::IN_PLAY); } }; void buildingplan_cycle(color_ostream &out, Tasks &tasks, unordered_map &planned_buildings, bool unsuspend_on_finalize) { static const VectorsToScanLast vectors_to_scan_last; DEBUG(cycle,out).print( "running buildingplan cycle for %zu registered buildings\n", planned_buildings.size()); for (auto it = tasks.begin(); it != tasks.end(); ) { auto vector_id = it->first; // we could make this a set, but it's only a few elements if (std::find(vectors_to_scan_last.vectors.begin(), vectors_to_scan_last.vectors.end(), vector_id) != vectors_to_scan_last.vectors.end()) { ++it; continue; } auto & buckets = it->second; doVector(out, vector_id, buckets, planned_buildings, unsuspend_on_finalize); if (buckets.empty()) { DEBUG(cycle,out).print("removing empty vector: %s; %zu vector(s) left\n", ENUM_KEY_STR(job_item_vector_id, vector_id).c_str(), tasks.size() - 1); it = tasks.erase(it); } else ++it; } for (auto vector_id : vectors_to_scan_last.vectors) { if (tasks.count(vector_id) == 0) continue; auto & buckets = tasks[vector_id]; doVector(out, vector_id, buckets, planned_buildings, unsuspend_on_finalize); if (buckets.empty()) { DEBUG(cycle,out).print("removing empty vector: %s; %zu vector(s) left\n", ENUM_KEY_STR(job_item_vector_id, vector_id).c_str(), tasks.size() - 1); tasks.erase(vector_id); } } DEBUG(cycle,out).print("cycle done; %zu registered building(s) left\n", planned_buildings.size()); }