#pragma once #include <memory> #include <mutex> #include <stack> #include <tuple> #include <unordered_map> #include "renderer_opengl.hpp" #include "Types.h" // we are not using boost so let's cheat: template <class T> inline void hash_combine(std::size_t & seed, const T & v) { std::hash<T> hasher; seed ^= hasher(v) + 0x9e3779b9 + (seed << 6) + (seed >> 2); } namespace std { template<typename S, typename T> struct hash<pair<S, T>> { inline size_t operator()(const pair<S, T> & v) const { size_t seed = 0; ::hash_combine(seed, v.first); ::hash_combine(seed, v.second); return seed; } }; template<typename S, typename T,typename V> struct hash<tuple<S, T, V>> { inline size_t operator()(const tuple<S, T, V> & v) const { size_t seed = 0; ::hash_combine(seed,get<0>(v)); ::hash_combine(seed,get<1>(v)); ::hash_combine(seed,get<2>(v)); return seed; } }; } // now we can hash pairs and tuples #include "modules/MapCache.h" bool isInRect(const df::coord2d& pos,const DFHack::rect2d& rect); struct renderer_light : public renderer_wrap { private: float light_adaptation; rgbf adapt_to_light(const rgbf& light) { const float influence=0.0001f; float intensity=(light.r+light.g+light.b)/3.0; light_adaptation=intensity*influence+light_adaptation*(1-influence); float delta=light_adaptation-intensity; rgbf ret; ret.r=light.r-delta; ret.g=light.g-delta; ret.b=light.b-delta; return ret; //if light_adaptation/intensity~1 then draw 1,1,1 (i.e. totally adapted) /* 1. adapted -> 1,1,1 (full bright everything okay) delta=0 multiplier=? 2. light adapted, real=dark -> darker delta>0 multiplier<1 3. dark adapted, real=light -> lighter delta<0 multiplier>1 */ //if light_adaptation/intensity!=0 then draw } void colorizeTile(int x,int y) { const int tile = x*(df::global::gps->dimy) + y; old_opengl* p=reinterpret_cast<old_opengl*>(parent); float *fg = p->fg + tile * 4 * 6; float *bg = p->bg + tile * 4 * 6; // float *tex = p->tex + tile * 2 * 6; rgbf light=lightGrid[tile];//for light adaptation: rgbf light=adapt_to_light(lightGrid[tile]); for (int i = 0; i < 6; i++) { //oh how sse would do wonders here, or shaders... *(fg++) *= light.r; *(fg++) *= light.g; *(fg++) *= light.b; *(fg++) = 1; *(bg++) *= light.r; *(bg++) *= light.g; *(bg++) *= light.b; *(bg++) = 1; } } void reinitLightGrid(int w,int h) { std::lock_guard<std::mutex> guard{dataMutex}; lightGrid.resize(w*h,rgbf(1,1,1)); } void reinitLightGrid() { reinitLightGrid(df::global::gps->dimy,df::global::gps->dimx); } public: std::mutex dataMutex; std::vector<rgbf> lightGrid; renderer_light(renderer* parent):renderer_wrap(parent),light_adaptation(1) { reinitLightGrid(); } virtual void update_tile(int32_t x, int32_t y) { renderer_wrap::update_tile(x,y); std::lock_guard<std::mutex> guard{dataMutex}; colorizeTile(x,y); }; virtual void update_all() { renderer_wrap::update_all(); std::lock_guard<std::mutex> guard{dataMutex}; for (int x = 0; x < df::global::gps->dimx; x++) for (int y = 0; y < df::global::gps->dimy; y++) colorizeTile(x,y); }; virtual void grid_resize(int32_t w, int32_t h) { renderer_wrap::grid_resize(w,h); reinitLightGrid(w,h); }; virtual void resize(int32_t w, int32_t h) { renderer_wrap::resize(w,h); reinitLightGrid(); } virtual void set_fullscreen() { renderer_wrap::set_fullscreen(); reinitLightGrid(); } virtual void zoom(df::zoom_commands z) { renderer_wrap::zoom(z); reinitLightGrid(); } }; class lightingEngine { public: lightingEngine(renderer_light* target):myRenderer(target){} virtual ~lightingEngine(){} virtual void reinit()=0; virtual void calculate()=0; virtual void updateWindow()=0; virtual void preRender()=0; virtual void loadSettings()=0; virtual void clear()=0; virtual void setHour(float h)=0; virtual void debug(bool enable)=0; protected: renderer_light* myRenderer; }; struct lightSource { rgbf power; int radius; bool flicker; lightSource():power(0,0,0),radius(0),flicker(false) { } lightSource(rgbf power,int radius); float powerSquared()const { return power.r*power.r+power.g*power.g+power.b*power.b; } void combine(const lightSource& other); }; struct matLightDef { bool isTransparent; rgbf transparency; bool isEmiting; bool flicker; rgbf emitColor; int radius; matLightDef():isTransparent(false),transparency(0,0,0),isEmiting(false),emitColor(0,0,0),radius(0){} matLightDef(rgbf transparency,rgbf emit,int rad):isTransparent(true),transparency(transparency), isEmiting(true),emitColor(emit),radius(rad){} matLightDef(rgbf emit,int rad):isTransparent(false),transparency(0,0,0),isEmiting(true),emitColor(emit),radius(rad){} matLightDef(rgbf transparency):isTransparent(true),transparency(transparency),isEmiting(false){} lightSource makeSource(float size=1) const { if(size>0.999 && size<1.001) return lightSource(emitColor,radius); else return lightSource(emitColor*size,radius*size);//todo check if this is sane } }; struct buildingLightDef { matLightDef light; bool poweredOnly; bool useMaterial; float thickness; float size; buildingLightDef():poweredOnly(false),useMaterial(true),thickness(1.0f),size(1.0f){} }; struct itemLightDef { matLightDef light; bool haul; bool equiped; bool onGround; bool inBuilding; bool inContainer; bool useMaterial; itemLightDef():haul(true),equiped(true),onGround(true),inBuilding(false),inContainer(false),useMaterial(true){} }; struct creatureLightDef { matLightDef light; }; class lightThread; class lightingEngineViewscreen; class lightThreadDispatch { lightingEngineViewscreen *parent; public: DFHack::rect2d viewPort; std::vector<std::unique_ptr<lightThread> > threadPool; std::vector<lightSource>& lights; tthread::mutex occlusionMutex; tthread::condition_variable occlusionDone; //all threads wait for occlusion to finish bool occlusionReady; tthread::mutex unprocessedMutex; std::stack<DFHack::rect2d> unprocessed; //stack of parts of map where lighting is not finished std::vector<rgbf>& occlusion; int& num_diffusion; tthread::mutex writeLock; //mutex for lightMap std::vector<rgbf>& lightMap; tthread::condition_variable writesDone; int writeCount; lightThreadDispatch(lightingEngineViewscreen* p); ~lightThreadDispatch(); void signalDoneOcclusion(); void shutdown(); void waitForWrites(); int getW(); int getH(); void start(int count); }; class lightThread { std::vector<rgbf> canvas; lightThreadDispatch& dispatch; DFHack::rect2d myRect; void work(); //main light calculation function void combine(); //combine existing canvas into global lightmap public: tthread::thread *myThread; bool isDone; //no mutex, because bool is atomic lightThread(lightThreadDispatch& dispatch); ~lightThread(); void run(); private: void doLight(int x,int y); void doRay(const rgbf& power,int cx,int cy,int tx,int ty,int num_diffuse); rgbf lightUpCell(rgbf power,int dx,int dy,int tx,int ty); }; class lightingEngineViewscreen:public lightingEngine { public: lightingEngineViewscreen(renderer_light* target); ~lightingEngineViewscreen(); void reinit(); void calculate(); void updateWindow(); void preRender(); void loadSettings(); void clear(); void debug(bool enable){doDebug=enable;}; private: void fixAdvMode(int mode); df::coord2d worldToViewportCoord(const df::coord2d& in,const DFHack::rect2d& r,const df::coord2d& window2d) ; void doSun(const lightSource& sky,MapExtras::MapCache& map); void doOcupancyAndLights(); rgbf propogateSun(MapExtras::Block* b, int x,int y,const rgbf& in,bool lastLevel); void doRay(std::vector<rgbf> & target, rgbf power,int cx,int cy,int tx,int ty); void doFovs(); void doLight(std::vector<rgbf> & target, int index); rgbf lightUpCell(std::vector<rgbf> & target, rgbf power,int dx,int dy,int tx,int ty); bool addLight(int tileId,const lightSource& light); void addOclusion(int tileId,const rgbf& c,float thickness); matLightDef* getMaterialDef(int matType,int matIndex); buildingLightDef* getBuildingDef(df::building* bld); creatureLightDef* getCreatureDef(df::unit* u); itemLightDef* getItemDef(df::item* it); //apply material to cell void applyMaterial(int tileId,const matLightDef& mat,float size=1, float thickness = 1); //try to find and apply material, if failed return false, and if def!=null then apply def. bool applyMaterial(int tileId,int matType,int matIndex,float size=1,float thickness = 1,const matLightDef* def=NULL); size_t inline getIndex(int x,int y) { return x*h+y; } df::coord2d inline getCoords(int index) { return df::coord2d(index/h, index%h); } //maps std::vector<rgbf> lightMap; std::vector<rgbf> ocupancy; std::vector<lightSource> lights; //Threading stuff int num_diffuse; //under same lock as ocupancy lightThreadDispatch threading; //misc void setHour(float h){dayHour=h;}; int getW()const {return w;} int getH()const {return h;} public: void lightWorkerThread(void * arg); private: rgbf getSkyColor(float v); bool doDebug; //settings float daySpeed; float dayHour; //<0 to cycle std::vector<rgbf> dayColors; // a gradient of colors, first to 0, last to 24 ///set up sane settings if setting file does not exist. void defaultSettings(); static int parseMaterials(lua_State* L); static int parseSpecial(lua_State* L); static int parseBuildings(lua_State* L); static int parseItems(lua_State* L); static int parseCreatures(lua_State* L); //special stuff matLightDef matLava; matLightDef matIce; matLightDef matAmbience; matLightDef matCursor; matLightDef matWall; matLightDef matWater; matLightDef matCitizen; float levelDim; int adv_mode; //materials std::unordered_map<std::pair<int,int>,matLightDef> matDefs; //buildings std::unordered_map<std::tuple<int,int,int>,buildingLightDef> buildingDefs; //creatures std::unordered_map<std::pair<int,int>,creatureLightDef> creatureDefs; //items std::unordered_map<std::pair<int,int>,itemLightDef> itemDefs; int w,h; DFHack::rect2d mapPort; friend class lightThreadDispatch; }; rgbf blend(const rgbf& a,const rgbf& b); rgbf blendMax(const rgbf& a,const rgbf& b);