# definition of classes used by ruby-autogen module DFHack module MemHack INSPECT_SIZE_LIMIT=16384 class MemStruct attr_accessor :_memaddr def _at(addr) ; d = dup ; d._memaddr = addr ; d ; end def _get ; self ; end def _cpp_init ; end def _cpp_delete ; end end class Compound < MemStruct class << self attr_accessor :_fields, :_rtti_classname, :_sizeof def field(name, offset) struct = yield return if not struct @_fields ||= [] @_fields << [name, offset, struct] define_method(name) { struct._at(@_memaddr+offset)._get } define_method("#{name}=") { |v| struct._at(@_memaddr+offset)._set(v) } end def _fields_ancestors if superclass.respond_to?(:_fields_ancestors) superclass._fields_ancestors + _fields.to_a else _fields.to_a end end def number(bits, signed, initvalue=nil, enum=nil) Number.new(bits, signed, initvalue, enum) end def float Float.new end def bit(shift, enum=nil) BitField.new(shift, 1, enum) end def bits(shift, len, enum=nil) BitField.new(shift, len, enum) end def pointer Pointer.new((yield if block_given?)) end def pointer_ary(tglen) PointerAry.new(tglen, yield) end def static_array(len, tglen, indexenum=nil) StaticArray.new(tglen, len, indexenum, yield) end def static_string(len) StaticString.new(len) end def stl_vector(tglen=nil) tg = yield if tglen case tglen when 1; StlVector8.new(tg) when 2; StlVector16.new(tg) else StlVector32.new(tg) end end def stl_string StlString.new end def stl_bit_vector StlBitVector.new end def stl_deque(tglen) StlDeque.new(tglen, yield) end def df_flagarray(indexenum=nil) DfFlagarray.new(indexenum) end def df_array(tglen) DfArray.new(tglen, yield) end def df_linked_list DfLinkedList.new(yield) end def global(glob) Global.new(glob) end def compound(name=nil, &b) m = Class.new(Compound) DFHack.const_set(name, m) if name m.class_eval(&b) m.new end def rtti_classname(n) DFHack.rtti_register(n, self) @_rtti_classname = n end def sizeof(n) @_sizeof = n end # allocate a new c++ object, return its ruby wrapper def cpp_new(init=nil) ptr = DFHack.malloc(_sizeof) if _rtti_classname and vt = DFHack.rtti_getvtable(_rtti_classname) DFHack.memory_write_int32(ptr, vt) # TODO call constructor end o = new._at(ptr) o._cpp_init o._set(init) if init o end end def _cpp_init _fields_ancestors.each { |n, o, s| s._at(@_memaddr+o)._cpp_init } end def _cpp_delete _fields_ancestors.each { |n, o, s| s._at(@_memaddr+o)._cpp_delete } DFHack.free(@_memaddr) @_memaddr = nil # turn future segfaults in harmless ruby exceptions end def _set(h) case h when Hash; h.each { |k, v| send("#{k}=", v) } when Array; names = _field_names ; raise 'bad size' if names.length != h.length ; names.zip(h).each { |n, a| send("#{n}=", a) } else _field_names.each { |n| send("#{n}=", h.send(n)) } end end def _fields ; self.class._fields.to_a ; end def _fields_ancestors ; self.class._fields_ancestors.to_a ; end def _field_names ; _fields_ancestors.map { |n, o, s| n } ; end def _rtti_classname ; self.class._rtti_classname ; end def _raw_rtti_classname ; df.get_rtti_classname(df.get_vtable_ptr(@_memaddr)) if self.class._rtti_classname ; end def _sizeof ; self.class._sizeof ; end def ==(o) ; o.kind_of?(Compound) and o._memaddr == _memaddr ; end @@inspecting = {} # avoid infinite recursion on mutually-referenced objects def inspect cn = self.class.name.sub(/^DFHack::/, '') out = "#<#{cn}" return out << ' ...>' if @@inspecting[_memaddr] @@inspecting[_memaddr] = true _fields_ancestors.each { |n, o, s| out << ' ' if out.length != 0 and out[-1, 1] != ' ' if out.length > INSPECT_SIZE_LIMIT out << '...' break end out << inspect_field(n, o, s) } out.chomp!(' ') @@inspecting.delete _memaddr out << '>' end def inspect_field(n, o, s) if s.kind_of?(BitField) and s._len == 1 and not s._enum send(n) ? n.to_s : '' elsif s.kind_of?(Pointer) "#{n}=#{s._at(@_memaddr+o).inspect}" elsif n == :_whole "_whole=0x#{_whole.to_s(16)}" else v = send(n).inspect "#{n}=#{v}" end rescue "#{n}=ERR(#{$!})" end end class Enum # number -> symbol def self.enum # ruby weirdness, needed to make the constants 'virtual' @enum ||= const_get(:ENUM) end # symbol -> number def self.nume @nume ||= const_get(:NUME) end def self.int(i, allow_bad_sym=false) raise ArgumentError, "invalid enum member #{i} of #{self}" if i.kind_of?(::Symbol) and not allow_bad_sym and not nume.has_key?(i) nume[i] || i end def self.sym(i) enum[i] || i end end class Number < MemStruct attr_accessor :_bits, :_signed, :_initvalue, :_enum def initialize(bits, signed, initvalue, enum) @_bits = bits @_signed = signed @_initvalue = initvalue @_enum = enum end def _get v = case @_bits when 32; DFHack.memory_read_int32(@_memaddr) when 16; DFHack.memory_read_int16(@_memaddr) when 8; DFHack.memory_read_int8( @_memaddr) when 64;(DFHack.memory_read_int32(@_memaddr) & 0xffffffff) + (DFHack.memory_read_int32(@_memaddr+4) << 32) end v &= (1 << @_bits) - 1 if not @_signed v = @_enum.sym(v) if @_enum v end def _set(v) v = @_enum.int(v) if @_enum case @_bits when 32; DFHack.memory_write_int32(@_memaddr, v) when 16; DFHack.memory_write_int16(@_memaddr, v) when 8; DFHack.memory_write_int8( @_memaddr, v) when 64; DFHack.memory_write_int32(@_memaddr, v & 0xffffffff) ; DFHack.memory_write_int32(@memaddr+4, v>>32) end end def _cpp_init _set(@_initvalue) if @_initvalue end end class Float < MemStruct def _get DFHack.memory_read_float(@_memaddr) end def _set(v) DFHack.memory_write_float(@_memaddr, v) end def _cpp_init _set(0.0) end end class BitField < MemStruct attr_accessor :_shift, :_len, :_enum def initialize(shift, len, enum=nil) @_shift = shift @_len = len @_enum = enum end def _mask (1 << @_len) - 1 end def _get v = DFHack.memory_read_int32(@_memaddr) >> @_shift if @_len == 1 and not @_enum ((v & 1) == 0) ? false : true else v &= _mask v = @_enum.sym(v) if @_enum v end end def _set(v) if @_len == 1 and (not @_enum or v == false or v == true) # allow 'bit = 0' v = (v && v != 0 ? 1 : 0) end v = @_enum.int(v) if @_enum v = (v & _mask) << @_shift ori = DFHack.memory_read_int32(@_memaddr) & 0xffffffff DFHack.memory_write_int32(@_memaddr, ori - (ori & ((-1 & _mask) << @_shift)) + v) end end class Pointer < MemStruct attr_accessor :_tg def initialize(tg) @_tg = tg end def _getp DFHack.memory_read_int32(@_memaddr) & 0xffffffff end def _setp(v) DFHack.memory_write_int32(@_memaddr, v) end def _get addr = _getp return if addr == 0 return addr if not @_tg @_tg._at(addr)._get end # XXX shaky... def _set(v) case v when Pointer; DFHack.memory_write_int32(@_memaddr, v._getp) when MemStruct; DFHack.memory_write_int32(@_memaddr, v._memaddr) when Integer if @_tg and @_tg.kind_of?(MemHack::Number) if _getp == 0 _setp(DFHack.malloc(@_tg._bits/8)) end @_tg._at(_getp)._set(v) else DFHack.memory_write_int32(@_memaddr, v) end when nil; DFHack.memory_write_int32(@_memaddr, 0) else @_tg._at(_getp)._set(v) end end def inspect ptr = _getp if ptr == 0 'NULL' else cn = '' cn = @_tg.class.name.sub(/^DFHack::/, '').sub(/^MemHack::/, '') if @_tg cn = @_tg._glob if cn == 'Global' "#" end end end class PointerAry < MemStruct attr_accessor :_tglen, :_tg def initialize(tglen, tg) @_tglen = tglen @_tg = tg end def _getp(i=0) delta = (i != 0 ? i*@_tglen : 0) (DFHack.memory_read_int32(@_memaddr) & 0xffffffff) + delta end def _get addr = _getp return if addr == 0 self end def _set(v) case v when Pointer; DFHack.memory_write_int32(@_memaddr, v._getp) when MemStruct; DFHack.memory_write_int32(@_memaddr, v._memaddr) when Integer; DFHack.memory_write_int32(@_memaddr, v) when nil; DFHack.memory_write_int32(@_memaddr, 0) else raise "cannot PointerAry._set(#{v.inspect})" end end def [](i) addr = _getp(i) return if addr == 0 @_tg._at(addr)._get end def []=(i, v) addr = _getp(i) raise 'null pointer' if addr == 0 @_tg._at(addr)._set(v) end def inspect ; ptr = _getp ; (ptr == 0) ? 'NULL' : "#" ; end end module Enumerable include ::Enumerable attr_accessor :_indexenum def each ; (0...length).each { |i| yield self[i] } ; end def inspect out = '[' each_with_index { |e, idx| out << ', ' if out.length > 1 if out.length > INSPECT_SIZE_LIMIT out << '...' break end out << "#{_indexenum.sym(idx)}=" if _indexenum out << e.inspect } out << ']' end def empty? ; length == 0 ; end def flatten ; map { |e| e.respond_to?(:flatten) ? e.flatten : e }.flatten ; end def index(e=nil, &b) ; (0...length).find { |i| b ? b[self[i]] : self[i] == e } ; end def map! ; (0...length).each { |i| self[i] = yield(self[i]) } ; end def first ; self[0] ; end def last ; self[length-1] ; end end class StaticArray < MemStruct attr_accessor :_tglen, :_length, :_indexenum, :_tg def initialize(tglen, length, indexenum, tg) @_tglen = tglen @_length = length @_indexenum = indexenum @_tg = tg end def _set(a) a.each_with_index { |v, i| self[i] = v } end def _cpp_init _length.times { |i| _tgat(i)._cpp_init } end def _cpp_delete _length.times { |i| _tgat(i)._cpp_delete } end alias length _length alias size _length def _tgat(i) @_tg._at(@_memaddr + i*@_tglen) if i >= 0 and i < @_length end def [](i) i = _indexenum.int(i) if _indexenum i += @_length if i < 0 if t = _tgat(i) t._get end end def []=(i, v) i = _indexenum.int(i) if _indexenum i += @_length if i < 0 if t = _tgat(i) t._set(v) else raise 'index out of bounds' end end include Enumerable end class StaticString < MemStruct attr_accessor :_length def initialize(length) @_length = length end def length if @_length == -1 maxlen = 4096 - (@_memaddr & 0xfff) maxlen += 4096 until len = DFHack.memory_read(@_memaddr, maxlen).index(?\0) len else @_length end end def _get DFHack.memory_read(@_memaddr, length) end def _set(v) DFHack.memory_write(@_memaddr, v[0, length]) end end class StlVector32 < MemStruct attr_accessor :_tg def initialize(tg) @_tg = tg end def length DFHack.memory_vector32_length(@_memaddr) end def size ; length ; end # alias wouldnt work for subclasses def valueptr_at(idx) DFHack.memory_vector32_ptrat(@_memaddr, idx) end def insert_at(idx, val) DFHack.memory_vector32_insertat(@_memaddr, idx, val) end def delete_at(idx) DFHack.memory_vector32_deleteat(@_memaddr, idx) end def _set(v) delete_at(length-1) while length > v.length # match lengthes v.each_with_index { |e, i| self[i] = e } # patch entries end def self._cpp_new new._at DFHack.memory_vector_new end def _cpp_delete DFHack.memory_vector_delete(@_memaddr) end def _cpp_init DFHack.memory_vector_init(@_memaddr) end def clear delete_at(length-1) while length > 0 end def [](idx) idx += length if idx < 0 @_tg._at(valueptr_at(idx))._get if idx >= 0 and idx < length end def []=(idx, v) idx += length if idx < 0 if idx >= length insert_at(length, 0) while idx >= length elsif idx < 0 raise 'index out of bounds' end @_tg._at(valueptr_at(idx))._set(v) end def push(v) self[length] = v self end def <<(v) ; push(v) ; end def pop l = length if l > 0 v = self[l-1] delete_at(l-1) end v end include Enumerable # do a binary search in an ordered vector for a specific target attribute # ex: world.history.figures.binsearch(unit.hist_figure_id) def binsearch(target, field=:id) o_start = 0 o_end = length - 1 while o_end >= o_start o_half = o_start + (o_end-o_start)/2 obj = self[o_half] oval = obj.send(field) if oval == target return obj elsif oval < target o_start = o_half+1 else o_end = o_half-1 end end end end class StlVector16 < StlVector32 def length DFHack.memory_vector16_length(@_memaddr) end def valueptr_at(idx) DFHack.memory_vector16_ptrat(@_memaddr, idx) end def insert_at(idx, val) DFHack.memory_vector16_insertat(@_memaddr, idx, val) end def delete_at(idx) DFHack.memory_vector16_deleteat(@_memaddr, idx) end end class StlVector8 < StlVector32 def length DFHack.memory_vector8_length(@_memaddr) end def valueptr_at(idx) DFHack.memory_vector8_ptrat(@_memaddr, idx) end def insert_at(idx, val) DFHack.memory_vector8_insertat(@_memaddr, idx, val) end def delete_at(idx) DFHack.memory_vector8_deleteat(@_memaddr, idx) end end class StlBitVector < StlVector32 def initialize ; end def length DFHack.memory_vectorbool_length(@_memaddr) end def insert_at(idx, val) DFHack.memory_vectorbool_insertat(@_memaddr, idx, val) end def delete_at(idx) DFHack.memory_vectorbool_deleteat(@_memaddr, idx) end def [](idx) idx += length if idx < 0 DFHack.memory_vectorbool_at(@_memaddr, idx) if idx >= 0 and idx < length end def []=(idx, v) idx += length if idx < 0 if idx >= length insert_at(idx, v) elsif idx < 0 raise 'index out of bounds' else DFHack.memory_vectorbool_setat(@_memaddr, idx, v) end end def self._cpp_new new._at DFHack.memory_vectorbool_new end def _cpp_delete DFHack.memory_vectorbool_delete(@_memaddr) end end class StlString < MemStruct def _get DFHack.memory_read_stlstring(@_memaddr) end def _set(v) DFHack.memory_write_stlstring(@_memaddr, v) end def self._cpp_new new._at DFHack.memory_stlstring_new end def _cpp_delete DFHack.memory_stlstring_delete(@_memaddr) end def _cpp_init DFHack.memory_stlstring_init(@_memaddr) end end class StlDeque < MemStruct attr_accessor :_tglen, :_tg def initialize(tglen, tg) @_tglen = tglen @_tg = tg end # XXX DF uses stl::deque, so to have a C binding we'd need to single-case every # possible struct size, like for StlVector. Just ignore it for now, deque are rare enough. def inspect ; "#" ; end end class DfFlagarray < MemStruct attr_accessor :_indexenum def initialize(indexenum) @_indexenum = indexenum end def length DFHack.memory_bitarray_length(@_memaddr) end # TODO _cpp_init, _cpp_delete def size ; length ; end def resize(len) DFHack.memory_bitarray_resize(@_memaddr, len) end def [](idx) idx = _indexenum.int(idx) if _indexenum idx += length if idx < 0 DFHack.memory_bitarray_isset(@_memaddr, idx) if idx >= 0 and idx < length end def []=(idx, v) idx = _indexenum.int(idx) if _indexenum idx += length if idx < 0 if idx >= length or idx < 0 raise 'index out of bounds' else DFHack.memory_bitarray_set(@_memaddr, idx, v) end end def inspect out = "#' end include Enumerable end class DfArray < Compound attr_accessor :_tglen, :_tg def initialize(tglen, tg) @_tglen = tglen @_tg = tg end field(:_ptr, 0) { number 32, false } field(:_length, 4) { number 16, false } def length ; _length ; end def size ; _length ; end # TODO _cpp_init, _cpp_delete def _tgat(i) @_tg._at(_ptr + i*@_tglen) if i >= 0 and i < _length end def [](i) i += _length if i < 0 if t = _tgat(i) t._get end end def []=(i, v) i += _length if i < 0 if t = _tgat(i) t._set(v) else raise 'index out of bounds' end end def _set(a) a.each_with_index { |v, i| self[i] = v } end include Enumerable end class DfLinkedList < Compound attr_accessor :_tg def initialize(tg) @_tg = tg end field(:_ptr, 0) { pointer } field(:_prev, 4) { pointer } field(:_next, 8) { pointer } def item # With the current xml structure, currently _tg designate # the type of the 'next' and 'prev' fields, not 'item'. # List head has item == NULL, so we can safely return nil. #addr = _ptr #return if addr == 0 #@_tg._at(addr)._get end def item=(v) #addr = _ptr #raise 'null pointer' if not addr #@_tg.at(addr)._set(v) raise 'null pointer' end def prev addr = _prev return if not addr @_tg._at(addr)._get end def next addr = _next return if not addr @_tg._at(addr)._get end alias next= _next= alias prev= _prev= include Enumerable def each o = self while o yield o.item if o.item o = o.next end end def inspect ; "#" ; end end class Global < MemStruct attr_accessor :_glob def initialize(glob) @_glob = glob end def _at(addr) g = DFHack.const_get(@_glob) g = DFHack.rtti_getclassat(g, addr) g.new._at(addr) end def inspect ; "#<#{@_glob}>" ; end end end class BooleanEnum def self.int(v) ; ((v == true) || (v == 1)) ? 1 : 0 ; end def self.sym(v) ; (!v || (v == 0)) ? false : true ; end end class StlString < MemHack::Compound field(:str, 0) { stl_string } def self.cpp_new(init=nil) s = MemHack::StlString._cpp_new s._set(init) if init new._at(s._memaddr) end def _cpp_delete MemHack::StlString.new._at(@_memaddr+0)._cpp_delete @_memaddr = nil end end class StlSet attr_accessor :_memaddr, :_enum def self.cpp_new(init=nil, enum=nil) ret = new DFHack.memory_stlset_new, enum init.each { |k| ret.set(k) } if init ret end def initialize(addr, enum=nil) addr = nil if addr == 0 @_memaddr = addr @_enum = enum end def isset(key) raise unless @_memaddr key = @_enum.int(key) if _enum DFHack.memory_stlset_isset(@_memaddr, key) end alias is_set? isset def set(key) raise unless @_memaddr key = @_enum.int(key) if _enum DFHack.memory_stlset_set(@_memaddr, key) end def delete(key) raise unless @_memaddr key = @_enum.int(key) if _enum DFHack.memory_stlset_deletekey(@_memaddr, key) end def clear raise unless @_memaddr DFHack.memory_stlset_clear(@_memaddr) end def _cpp_delete raise unless @_memaddr DFHack.memory_stlset_delete(@_memaddr) @_memaddr = nil end end # cpp rtti name -> rb class @rtti_n2c = {} @rtti_c2n = {} # cpp rtti name -> vtable ptr @rtti_n2v = {} @rtti_v2n = {} def self.rtti_n2c ; @rtti_n2c ; end def self.rtti_c2n ; @rtti_c2n ; end def self.rtti_n2v ; @rtti_n2v ; end def self.rtti_v2n ; @rtti_v2n ; end # register a ruby class with a cpp rtti class name def self.rtti_register(cppname, cls) @rtti_n2c[cppname] = cls @rtti_c2n[cls] = cppname end # return the ruby class to use for the cpp object at address if rtti info is available def self.rtti_getclassat(cls, addr) if addr != 0 and @rtti_c2n[cls] # rtti info exist for class => cpp object has a vtable @rtti_n2c[rtti_readclassname(get_vtable_ptr(addr))] || cls else cls end end # try to read the rtti classname from an object vtable pointer def self.rtti_readclassname(vptr) unless n = @rtti_v2n[vptr] n = @rtti_v2n[vptr] = get_rtti_classname(vptr).to_sym @rtti_n2v[n] = vptr end n end # return the vtable pointer from the cpp rtti name def self.rtti_getvtable(cppname) unless v = @rtti_n2v[cppname] v = get_vtable(cppname.to_s) @rtti_n2v[cppname] = v @rtti_v2n[v] = cppname if v != 0 end v if v != 0 end def self.vmethod_call(obj, voff, a0=0, a1=0, a2=0, a3=0, a4=0, a5=0) this = obj._memaddr vt = df.get_vtable_ptr(this) fptr = df.memory_read_int32(vt + voff) & 0xffffffff vmethod_do_call(this, fptr, vmethod_arg(a0), vmethod_arg(a1), vmethod_arg(a2), vmethod_arg(a3), vmethod_arg(a4), vmethod_arg(a5)) end def self.vmethod_arg(arg) case arg when nil, false; 0 when true; 1 when Integer; arg #when String; [arg].pack('p').unpack('L')[0] # raw pointer to buffer when MemHack::Compound, StlSet; arg._memaddr else raise "bad vmethod arg #{arg.class}" end end end