module DFHack class << self # update the ruby.cpp version to accept a block def suspend if block_given? begin do_suspend yield ensure resume end else do_suspend end end module ::Kernel def puts(*a) a.flatten.each { |l| DFHack.print_str(l.to_s.chomp + "\n") } nil end def puts_err(*a) a.flatten.each { |l| DFHack.print_err(l.to_s.chomp + "\n") } nil end def p(*a) a.each { |e| puts_err e.inspect } end end # register a callback to be called every gframe or more # ex: DFHack.onupdate_register { DFHack.world.units[0].counters.job_counter = 0 } def onupdate_register(&b) @onupdate_list ||= [] @onupdate_list << b DFHack.onupdate_active = true @onupdate_list.last end # delete the callback for onupdate ; use the value returned by onupdate_register def onupdate_unregister(b) @onupdate_list.delete b DFHack.onupdate_active = false if @onupdate_list.empty? end # this method is called by dfhack every 'onupdate' if onupdate_active is true def onupdate @onupdate_list ||= [] @onupdate_list.each { |cb| cb.call } end # register a callback to be called every gframe or more # ex: DFHack.onstatechange_register { |newstate| puts "state changed to #{newstate}" } def onstatechange_register(&b) @onstatechange_list ||= [] @onstatechange_list << b @onstatechange_list.last end # delete the callback for onstatechange ; use the value returned by onstatechange_register def onstatechange_unregister(b) @onstatechange_list.delete b end # this method is called by dfhack every 'onstatechange' def onstatechange(newstate) @onstatechange_list ||= [] @onstatechange_list.each { |cb| cb.call(newstate) } end # return an Unit # with no arg, return currently selected unit in df UI ('v' or 'k' menu) # with numeric arg, search unit by unit.id # with an argument that respond to x/y/z (eg cursor), find first unit at this position def find_unit(what=:selected) if what == :selected case ui.main.mode when :ViewUnits # nobody selected => idx == 0 v = world.units.active[ui_selected_unit] v if v and v.pos.z == cursor.z when :LookAround k = ui_look_list.items[ui_look_cursor] k.unit if k.type == :Unit end elsif what.kind_of?(Integer) world.units.all.binsearch(what) elsif what.respond_to?(:x) or what.respond_to?(:pos) what = what.pos if what.respond_to?(:pos) x, y, z = what.x, what.y, what.z world.units.all.find { |u| u.pos.x == x and u.pos.y == y and u.pos.z == z } else raise "what what?" end end # return an Item # arg similar to find_unit; no arg = 'k' menu def find_item(what=:selected) if what == :selected case ui.main.mode when :LookAround k = ui_look_list.items[ui_look_cursor] k.item if k.type == :Item end elsif what.kind_of?(Integer) world.items.all.binsearch(what) elsif what.respond_to?(:x) or what.respond_to?(:pos) what = what.pos if what.respond_to?(:pos) x, y, z = what.x, what.y, what.z world.items.all.find { |i| i.pos.x == x and i.pos.y == y and i.pos.z == z } else raise "what what?" end end # return a map block by tile coordinates # you can also use find_map_block(cursor) or anything that respond to x/y/z def map_block_at(x, y=nil, z=nil) x = x.pos if x.respond_to?(:pos) x, y, z = x.x, x.y, x.z if x.respond_to?(:x) if x >= 0 and x < world.map.x_count and y >= 0 and y < world.map.y_count and z >= 0 and z < world.map.z_count world.map.block_index[x/16][y/16][z] end end def map_designation_at(x, y=nil, z=nil) x = x.pos if x.respond_to?(:pos) x, y, z = x.x, x.y, x.z if x.respond_to?(:x) if b = map_block_at(x, y, z) b.designation[x%16][y%16] end end def map_occupancy_at(x, y=nil, z=nil) x = x.pos if x.respond_to?(:pos) x, y, z = x.x, x.y, x.z if x.respond_to?(:x) if b = map_block_at(x, y, z) b.occupancy[x%16][y%16] end end # yields every map block def each_map_block (0...world.map.x_count_block).each { |xb| xl = world.map.block_index[xb] (0...world.map.y_count_block).each { |yb| yl = xl[yb] (0...world.map.z_count_block).each { |z| p = yl[z] yield p if p } } } end # yields every map block for a given z level def each_map_block_z(z) (0...world.map.x_count_block).each { |xb| xl = world.map.block_index[xb] (0...world.map.y_count_block).each { |yb| p = xl[yb][z] yield p if p } } end # return true if the argument is under the cursor def at_cursor?(obj) same_pos?(obj, cursor) end # returns true if both arguments are at the same x/y/z def same_pos?(pos1, pos2) pos1 = pos1.pos if pos1.respond_to?(:pos) pos2 = pos2.pos if pos2.respond_to?(:pos) pos1.x == pos2.x and pos1.y == pos2.y and pos1.z == pos2.z end # center the DF screen on something # updates the cursor position if visible def center_viewscreen(x, y=nil, z=nil) x = x.pos if x.respond_to?(:pos) x, y, z = x.x, x.y, x.z if x.respond_to?(:x) # compute screen 'map' size (tiles) menuwidth = ui_menu_width # ui_menu_width shows only the 'tab' status menuwidth = 1 if menuwidth == 2 and ui_area_map_width == 2 and cursor.x != -30000 menuwidth = 2 if menuwidth == 3 and cursor.x != -30000 w_w = gps.dimx - 2 w_h = gps.dimy - 2 case menuwidth when 1; w_w -= 55 when 2; w_w -= (ui_area_map_width == 2 ? 24 : 31) end # center view w_x = x - w_w/2 w_y = y - w_h/2 w_z = z # round view coordinates (optional) #w_x -= w_x % 10 #w_y -= w_y % 10 # crop to map limits w_x = [[w_x, world.map.x_count - w_w].min, 0].max w_y = [[w_y, world.map.y_count - w_h].min, 0].max self.window_x = w_x self.window_y = w_y self.window_z = w_z if cursor.x != -30000 cursor.x, cursor.y, cursor.z = x, y, z end end # add an announcement # color = integer, bright = bool def add_announcement(str, color=nil, bright=nil) cont = false while str.length > 0 rep = Report.cpp_new rep.color = color if color rep.bright = ((bright && bright != 0) ? 1 : 0) if bright != nil rep.year = cur_year rep.time = cur_year_tick rep.flags.continuation = cont cont = true rep.flags.announcement = true rep.text = str[0, 73] str = str[73..-1].to_s rep.id = world.status.next_report_id world.status.next_report_id += 1 world.status.reports << rep world.status.announcements << rep world.status.display_timer = 2000 end end # try to match a user-specified name to one from the raws # uses case-switching and substring matching # eg match_rawname('coal', ['COAL_BITUMINOUS', 'BAUXITE']) => 'COAL_BITUMINOUS' def match_rawname(name, rawlist) rawlist.each { |r| return r if name == r } rawlist.each { |r| return r if name.downcase == r.downcase } may = rawlist.find_all { |r| r.downcase.index(name.downcase) } may.first if may.length == 1 end # link a job to the world # allocate & set job.id, allocate a JobListLink, link to job & world.job_list def job_link(job) lastjob = world.job_list lastjob = lastjob.next while lastjob.next joblink = JobListLink.cpp_new joblink.prev = lastjob joblink.item = job job.list_link = joblink job.id = df.job_next_id df.job_next_id += 1 lastjob.next = joblink end # attach an item to a job, flag item in_job def job_attachitem(job, item, role=:Hauled, filter_idx=-1) if role != :TargetContainer item.flags.in_job = true end itemlink = SpecificRef.cpp_new itemlink.type = :JOB itemlink.job = job item.specific_refs << itemlink joblink = JobItemRef.cpp_new joblink.item = item joblink.role = role joblink.job_item_idx = filter_idx job.items << joblink end end end # global alias so we can write 'df.world.units.all[0]' def df DFHack end # following: definitions used by ruby-autogen.rb module DFHack module MemHack INSPECT_SIZE_LIMIT=16384 class MemStruct attr_accessor :_memaddr def _at(addr) ; d = dup ; d._memaddr = addr ; d ; end def _get ; self ; end def _cpp_init ; end end class Compound < MemStruct class << self attr_accessor :_fields, :_rtti_classname, :_sizeof def field(name, offset) struct = yield return if not struct @_fields ||= [] @_fields << [name, offset, struct] define_method(name) { struct._at(@_memaddr+offset)._get } define_method("#{name}=") { |v| struct._at(@_memaddr+offset)._set(v) } end def _fields_ancestors if superclass.respond_to?(:_fields_ancestors) superclass._fields_ancestors + _fields.to_a else _fields.to_a end end def number(bits, signed, initvalue=nil, enum=nil) Number.new(bits, signed, initvalue, enum) end def float Float.new end def bit(shift) BitField.new(shift, 1) end def bits(shift, len, enum=nil) BitField.new(shift, len, enum) end def pointer Pointer.new((yield if block_given?)) end def pointer_ary(tglen) PointerAry.new(tglen, yield) end def static_array(len, tglen, indexenum=nil) StaticArray.new(tglen, len, indexenum, yield) end def static_string(len) StaticString.new(len) end def stl_vector(tglen=nil) tg = yield if tglen case tglen when 1; StlVector8.new(tg) when 2; StlVector16.new(tg) else StlVector32.new(tg) end end def stl_string StlString.new end def stl_bit_vector StlBitVector.new end def stl_deque(tglen) StlDeque.new(tglen, yield) end def df_flagarray(indexenum=nil) DfFlagarray.new(indexenum) end def df_array(tglen) DfArray.new(tglen, yield) end def df_linked_list DfLinkedList.new(yield) end def global(glob) Global.new(glob) end def compound(name=nil, &b) m = Class.new(Compound) DFHack.const_set(name, m) if name m.instance_eval(&b) m.new end def rtti_classname(n) DFHack.rtti_register(n, self) @_rtti_classname = n end def sizeof(n) @_sizeof = n end # allocate a new c++ object, return its ruby wrapper def cpp_new ptr = DFHack.malloc(_sizeof) if _rtti_classname and vt = DFHack.rtti_getvtable(_rtti_classname) DFHack.memory_write_int32(ptr, vt) # TODO call constructor end o = new._at(ptr) o._cpp_init o end end def _cpp_init _fields_ancestors.each { |n, o, s| s._at(@_memaddr+o)._cpp_init } end def _set(h) case h when Hash; h.each { |k, v| send("_#{k}=", v) } when Array; names = _field_names ; raise 'bad size' if names.length != h.length ; names.zip(h).each { |n, a| send("#{n}=", a) } when Compound; _field_names.each { |n| send("#{n}=", h.send(n)) } else raise 'wut?' end end def _fields ; self.class._fields.to_a ; end def _fields_ancestors ; self.class._fields_ancestors.to_a ; end def _field_names ; _fields_ancestors.map { |n, o, s| n } ; end def _rtti_classname ; self.class._rtti_classname ; end def _sizeof ; self.class._sizeof ; end @@inspecting = {} # avoid infinite recursion on mutually-referenced objects def inspect cn = self.class.name.sub(/^DFHack::/, '') cn << ' @' << ('0x%X' % _memaddr) if cn != '' out = "#<#{cn}" return out << ' ...>' if @@inspecting[_memaddr] @@inspecting[_memaddr] = true _fields_ancestors.each { |n, o, s| out << ' ' if out.length != 0 and out[-1, 1] != ' ' if out.length > INSPECT_SIZE_LIMIT out << '...' break end out << inspect_field(n, o, s) } out.chomp!(' ') @@inspecting.delete _memaddr out << '>' end def inspect_field(n, o, s) if s.kind_of?(BitField) and s._len == 1 send(n) ? n.to_s : '' elsif s.kind_of?(Pointer) "#{n}=#{s._at(@_memaddr+o).inspect}" elsif n == :_whole "_whole=0x#{_whole.to_s(16)}" else v = send(n).inspect "#{n}=#{v}" end rescue "#{n}=ERR(#{$!})" end end class Enum # number -> symbol def self.enum # ruby weirdness, needed to make the constants 'virtual' @enum ||= const_get(:ENUM) end # symbol -> number def self.nume @nume ||= const_get(:NUME) end def self.int(i) nume[i] || i end def self.sym(i) enum[i] || i end end class Number < MemStruct attr_accessor :_bits, :_signed, :_initvalue, :_enum def initialize(bits, signed, initvalue, enum) @_bits = bits @_signed = signed @_initvalue = initvalue @_enum = enum end def _get v = case @_bits when 32; DFHack.memory_read_int32(@_memaddr) when 16; DFHack.memory_read_int16(@_memaddr) when 8; DFHack.memory_read_int8( @_memaddr) when 64;(DFHack.memory_read_int32(@_memaddr) & 0xffffffff) + (DFHack.memory_read_int32(@_memaddr+4) << 32) end v &= (1 << @_bits) - 1 if not @_signed v = @_enum.sym(v) if @_enum v end def _set(v) v = @_enum.int(v) if @_enum case @_bits when 32; DFHack.memory_write_int32(@_memaddr, v) when 16; DFHack.memory_write_int16(@_memaddr, v) when 8; DFHack.memory_write_int8( @_memaddr, v) when 64; DFHack.memory_write_int32(@_memaddr, v & 0xffffffff) ; DFHack.memory_write_int32(@memaddr+4, v>>32) end end def _cpp_init _set(@_initvalue) if @_initvalue end end class Float < MemStruct def _get DFHack.memory_read_float(@_memaddr) end def _set(v) DFHack.memory_write_float(@_memaddr, v) end def _cpp_init _set(0.0) end end class BitField < MemStruct attr_accessor :_shift, :_len, :_enum def initialize(shift, len, enum=nil) @_shift = shift @_len = len @_enum = enum end def _mask (1 << @_len) - 1 end def _get v = DFHack.memory_read_int32(@_memaddr) >> @_shift if @_len == 1 ((v & 1) == 0) ? false : true else v &= _mask v = @_enum.sym(v) if @_enum v end end def _set(v) if @_len == 1 # allow 'bit = 0' v = (v && v != 0 ? 1 : 0) end v = @_enum.int(v) if @_enum v = (v & _mask) << @_shift ori = DFHack.memory_read_int32(@_memaddr) & 0xffffffff DFHack.memory_write_int32(@_memaddr, ori - (ori & ((-1 & _mask) << @_shift)) + v) end end class Pointer < MemStruct attr_accessor :_tg def initialize(tg) @_tg = tg end def _getp DFHack.memory_read_int32(@_memaddr) & 0xffffffff end def _get addr = _getp return if addr == 0 @_tg._at(addr)._get end # XXX shaky... def _set(v) if v.kind_of?(Pointer) DFHack.memory_write_int32(@_memaddr, v._getp) elsif v.kind_of?(MemStruct) DFHack.memory_write_int32(@_memaddr, v._memaddr) else _get._set(v) end end def inspect ptr = _getp if ptr == 0 'NULL' else cn = '' cn = @_tg.class.name.sub(/^DFHack::/, '').sub(/^MemHack::/, '') if @_tg cn = @_tg._glob if cn == 'Global' "#" end end end class PointerAry < MemStruct attr_accessor :_tglen, :_tg def initialize(tglen, tg) @_tglen = tglen @_tg = tg end def _getp(i=0) delta = (i != 0 ? i*@_tglen : 0) (DFHack.memory_read_int32(@_memaddr) & 0xffffffff) + delta end def _get addr = _getp return if addr == 0 self end def [](i) addr = _getp(i) return if addr == 0 @_tg._at(addr)._get end def []=(i, v) addr = _getp(i) raise 'null pointer' if addr == 0 @_tg._at(addr)._set(v) end def inspect ; ptr = _getp ; (ptr == 0) ? 'NULL' : "#" ; end end module Enumerable include ::Enumerable attr_accessor :_indexenum def each ; (0...length).each { |i| yield self[i] } ; end def inspect out = '[' each_with_index { |e, idx| out << ', ' if out.length > 1 if out.length > INSPECT_SIZE_LIMIT out << '...' break end out << "#{_indexenum.sym(idx)}=" if _indexenum out << e.inspect } out << ']' end def empty? ; length == 0 ; end def flatten ; map { |e| e.respond_to?(:flatten) ? e.flatten : e }.flatten ; end end class StaticArray < MemStruct attr_accessor :_tglen, :_length, :_indexenum, :_tg def initialize(tglen, length, indexenum, tg) @_tglen = tglen @_length = length @_indexenum = indexenum @_tg = tg end def _set(a) a.each_with_index { |v, i| self[i] = v } end def _cpp_init _length.times { |i| _tgat(i)._cpp_init } end alias length _length alias size _length def _tgat(i) @_tg._at(@_memaddr + i*@_tglen) if i >= 0 and i < @_length end def [](i) i = _indexenum.int(i) if _indexenum i += @_length if i < 0 _tgat(i)._get end def []=(i, v) i = _indexenum.int(i) if _indexenum i += @_length if i < 0 _tgat(i)._set(v) end include Enumerable end class StaticString < MemStruct attr_accessor :_length def initialize(length) @_length = length end def _get DFHack.memory_read(@_memaddr, @_length) end def _set(v) DFHack.memory_write(@_memaddr, v[0, @_length]) end end class StlVector32 < MemStruct attr_accessor :_tg def initialize(tg) @_tg = tg end def length DFHack.memory_vector32_length(@_memaddr) end def size ; length ; end # alias wouldnt work for subclasses def valueptr_at(idx) DFHack.memory_vector32_ptrat(@_memaddr, idx) end def insert_at(idx, val) DFHack.memory_vector32_insert(@_memaddr, idx, val) end def delete_at(idx) DFHack.memory_vector32_delete(@_memaddr, idx) end def _set(v) delete_at(length-1) while length > v.length # match lengthes v.each_with_index { |e, i| self[i] = e } # patch entries end def _cpp_init DFHack.memory_vector_init(@_memaddr) end def clear delete_at(length-1) while length > 0 end def [](idx) idx += length if idx < 0 @_tg._at(valueptr_at(idx))._get if idx >= 0 and idx < length end def []=(idx, v) idx += length if idx < 0 if idx >= length insert_at(idx, 0) elsif idx < 0 raise 'invalid idx' end @_tg._at(valueptr_at(idx))._set(v) end def push(v) self[length] = v self end def <<(v) ; push(v) ; end def pop l = length if l > 0 v = self[l-1] delete_at(l-1) end v end include Enumerable # do a binary search in an ordered vector for a specific target attribute # ex: world.history.figures.binsearch(unit.hist_figure_id) def binsearch(target, field=:id) o_start = 0 o_end = length - 1 while o_end >= o_start o_half = o_start + (o_end-o_start)/2 obj = self[o_half] oval = obj.send(field) if oval == target return obj elsif oval < target o_start = o_half+1 else o_end = o_half-1 end end end end class StlVector16 < StlVector32 def length DFHack.memory_vector16_length(@_memaddr) end def valueptr_at(idx) DFHack.memory_vector16_ptrat(@_memaddr, idx) end def insert_at(idx, val) DFHack.memory_vector16_insert(@_memaddr, idx, val) end def delete_at(idx) DFHack.memory_vector16_delete(@_memaddr, idx) end end class StlVector8 < StlVector32 def length DFHack.memory_vector8_length(@_memaddr) end def valueptr_at(idx) DFHack.memory_vector8_ptrat(@_memaddr, idx) end def insert_at(idx, val) DFHack.memory_vector8_insert(@_memaddr, idx, val) end def delete_at(idx) DFHack.memory_vector8_delete(@_memaddr, idx) end end class StlBitVector < StlVector32 def initialize ; end def length DFHack.memory_vectorbool_length(@_memaddr) end def insert_at(idx, val) DFHack.memory_vectorbool_insert(@_memaddr, idx, val) end def delete_at(idx) DFHack.memory_vectorbool_delete(@_memaddr, idx) end def [](idx) idx += length if idx < 0 DFHack.memory_vectorbool_at(@_memaddr, idx) if idx >= 0 and idx < length end def []=(idx, v) idx += length if idx < 0 if idx >= length insert_at(idx, v) elsif idx < 0 raise 'invalid idx' else DFHack.memory_vectorbool_setat(@_memaddr, idx, v) end end end class StlString < MemStruct def _get DFHack.memory_read_stlstring(@_memaddr) end def _set(v) DFHack.memory_write_stlstring(@_memaddr, v) end def _cpp_init DFHack.memory_stlstring_init(@_memaddr) end end class StlDeque < MemStruct attr_accessor :_tglen, :_tg def initialize(tglen, tg) @_tglen = tglen @_tg = tg end # XXX DF uses stl::deque, so to have a C binding we'd need to single-case every # possible struct size, like for StlVector. Just ignore it for now, deque are rare enough. def inspect ; "#" ; end end class DfFlagarray < MemStruct attr_accessor :_indexenum def initialize(indexenum) @_indexenum = indexenum end def length DFHack.memory_bitarray_length(@_memaddr) end # TODO _cpp_init def size ; length ; end def resize(len) DFHack.memory_bitarray_resize(@_memaddr, len) end def [](idx) idx = _indexenum.int(idx) if _indexenum idx += length if idx < 0 DFHack.memory_bitarray_isset(@_memaddr, idx) if idx >= 0 and idx < length end def []=(idx, v) idx = _indexenum.int(idx) if _indexenum idx += length if idx < 0 if idx >= length or idx < 0 raise 'invalid idx' else DFHack.memory_bitarray_set(@_memaddr, idx, v) end end include Enumerable end class DfArray < Compound attr_accessor :_tglen, :_tg def initialize(tglen, tg) @_tglen = tglen @_tg = tg end field(:_ptr, 0) { number 32, false } field(:_length, 4) { number 16, false } def length ; _length ; end def size ; _length ; end # TODO _cpp_init def _tgat(i) @_tg._at(_ptr + i*@_tglen) if i >= 0 and i < _length end def [](i) i += _length if i < 0 _tgat(i)._get end def []=(i, v) i += _length if i < 0 _tgat(i)._set(v) end def _set(a) a.each_with_index { |v, i| self[i] = v } end include Enumerable end class DfLinkedList < Compound attr_accessor :_tg def initialize(tg) @_tg = tg end field(:_ptr, 0) { number 32, false } field(:_prev, 4) { number 32, false } field(:_next, 8) { number 32, false } def item # With the current xml structure, currently _tg designate # the type of the 'next' and 'prev' fields, not 'item'. # List head has item == NULL, so we can safely return nil. #addr = _ptr #return if addr == 0 #@_tg._at(addr)._get end def item=(v) #addr = _ptr #raise 'null pointer' if addr == 0 #@_tg.at(addr)._set(v) raise 'null pointer' end def prev addr = _prev return if addr == 0 @_tg._at(addr)._get end def next addr = _next return if addr == 0 @_tg._at(addr)._get end include Enumerable def each o = self while o yield o.item if o.item o = o.next end end def inspect ; "#" ; end end class Global < MemStruct attr_accessor :_glob def initialize(glob) @_glob = glob end def _at(addr) g = DFHack.const_get(@_glob) g = DFHack.rtti_getclassat(g, addr) g.new._at(addr) end def inspect ; "#<#{@_glob}>" ; end end end # module MemHack class BooleanEnum def self.int(v) ; ((v == true) || (v == 1)) ? 1 : 0 ; end def self.sym(v) ; (!v || (v == 0)) ? false : true ; end end # cpp rtti name -> rb class @rtti_n2c = {} @rtti_c2n = {} # cpp rtti name -> vtable ptr @rtti_n2v = {} @rtti_v2n = {} def self.rtti_n2c ; @rtti_n2c ; end def self.rtti_c2n ; @rtti_c2n ; end def self.rtti_n2v ; @rtti_n2v ; end def self.rtti_v2n ; @rtti_v2n ; end # register a ruby class with a cpp rtti class name def self.rtti_register(cppname, cls) @rtti_n2c[cppname] = cls @rtti_c2n[cls] = cppname end # return the ruby class to use for the cpp object at address if rtti info is available def self.rtti_getclassat(cls, addr) if addr != 0 and @rtti_c2n[cls] # rtti info exist for class => cpp object has a vtable @rtti_n2c[rtti_readclassname(get_vtable_ptr(addr))] || cls else cls end end # try to read the rtti classname from an object vtable pointer def self.rtti_readclassname(vptr) unless n = @rtti_v2n[vptr] n = @rtti_v2n[vptr] = get_rtti_classname(vptr).to_sym @rtti_n2v[n] = vptr end n end # return the vtable pointer from the cpp rtti name def self.rtti_getvtable(cppname) unless v = @rtti_n2v[cppname] v = get_vtable(cppname.to_s) @rtti_n2v[cppname] = v @rtti_v2n[v] = cppname if v != 0 end v if v != 0 end def self.vmethod_call(obj, voff, a0=0, a1=0, a2=0, a3=0, a4=0) vmethod_do_call(obj._memaddr, voff, vmethod_arg(a0), vmethod_arg(a1), vmethod_arg(a2), vmethod_arg(a3)) end def self.vmethod_arg(arg) case arg when nil, false; 0 when true; 1 when Integer; arg #when String; [arg].pack('p').unpack('L')[0] # raw pointer to buffer when MemHack::Compound; arg._memaddr else raise "bad vmethod arg #{arg.class}" end end end # load autogen'd file File.exist?('hack/ruby-autogen.rb') ? require('hack/ruby-autogen') : require('ruby-autogen') # load optional user-specified startup file load 'ruby_custom.rb' if File.exist?('ruby_custom.rb')