// Produces a list of materials available on the map. // Options: // -a : show unrevealed tiles // -p : don't show plants // -s : don't show slade // -t : don't show demon temple //#include <cstdlib> #include <iostream> #include <iomanip> #include <map> #include <algorithm> #include <vector> using namespace std; #include "Core.h" #include "Console.h" #include "Export.h" #include "PluginManager.h" #include "modules/MapCache.h" #include "MiscUtils.h" #include "DataDefs.h" #include "df/world.h" #include "df/world_data.h" #include "df/world_region_details.h" #include "df/world_geo_biome.h" #include "df/world_geo_layer.h" #include "df/inclusion_type.h" #include "df/viewscreen_choose_start_sitest.h" using namespace DFHack; using namespace df::enums; using df::global::world; using df::coord2d; struct matdata { const static int invalid_z = -30000; matdata() { count = 0; lower_z = invalid_z; upper_z = invalid_z; } matdata (const matdata & copyme) { count = copyme.count; lower_z = copyme.lower_z; upper_z = copyme.upper_z; } unsigned int add( int z_level = invalid_z, int delta = 1 ) { count += delta; if(z_level != invalid_z) { if(lower_z == invalid_z || z_level < lower_z) { lower_z = z_level; } if(upper_z == invalid_z || z_level > upper_z) { upper_z = z_level; } } return count; } unsigned int count; int lower_z; int upper_z; }; bool operator>(const matdata & q1, const matdata & q2) { return q1.count > q2.count; } template<typename _Tp = matdata > struct shallower : public binary_function<_Tp, _Tp, bool> { bool operator()(const _Tp& top, const _Tp& bottom) const { float topavg = (top.lower_z + top.upper_z)/2.0f; float btmavg = (bottom.lower_z + bottom.upper_z)/2.0f; return topavg > btmavg; } }; typedef std::map<int16_t, matdata> MatMap; typedef std::vector< pair<int16_t, matdata> > MatSorter; typedef std::vector<df::plant *> PlantList; #define TO_PTR_VEC(obj_vec, ptr_vec) \ ptr_vec.clear(); \ for (size_t i = 0; i < obj_vec.size(); i++) \ ptr_vec.push_back(&obj_vec[i]) template<template <typename> class P = std::greater > struct compare_pair_second { template<class T1, class T2> bool operator()(const std::pair<T1, T2>& left, const std::pair<T1, T2>& right) { return P<T2>()(left.second, right.second); } }; static void printMatdata(color_ostream &con, const matdata &data) { con << std::setw(9) << data.count; if(data.lower_z != data.upper_z) con <<" Z:" << std::setw(4) << data.lower_z << ".." << data.upper_z << std::endl; else con <<" Z:" << std::setw(4) << data.lower_z << std::endl; } static int getValue(const df::inorganic_raw &info) { return info.material.material_value; } static int getValue(const df::plant_raw &info) { return info.value; } template <typename T, template <typename> class P> void printMats(color_ostream &con, MatMap &mat, std::vector<T*> &materials, bool show_value) { unsigned int total = 0; MatSorter sorting_vector; for (MatMap::const_iterator it = mat.begin(); it != mat.end(); ++it) { sorting_vector.push_back(*it); } std::sort(sorting_vector.begin(), sorting_vector.end(), compare_pair_second<P>()); for (MatSorter::const_iterator it = sorting_vector.begin(); it != sorting_vector.end(); ++it) { if(it->first >= materials.size()) { con << "Bad index: " << it->first << " out of " << materials.size() << endl; continue; } T* mat = materials[it->first]; // Somewhat of a hack, but it works because df::inorganic_raw and df::plant_raw both have a field named "id" con << std::setw(25) << mat->id << " : "; if (show_value) con << std::setw(3) << getValue(*mat) << " : "; printMatdata(con, it->second); total += it->second.count; } con << ">>> TOTAL = " << total << std::endl << std::endl; } void printVeins(color_ostream &con, MatMap &mat_map, DFHack::Materials* mats, bool show_value) { MatMap ores; MatMap gems; MatMap rest; for (MatMap::const_iterator it = mat_map.begin(); it != mat_map.end(); ++it) { df::inorganic_raw *gloss = world->raws.inorganics[it->first]; if (gloss->material.isGem()) gems[it->first] = it->second; else if (gloss->isOre()) ores[it->first] = it->second; else rest[it->first] = it->second; } con << "Ores:" << std::endl; printMats<df::inorganic_raw, std::greater>(con, ores, world->raws.inorganics, show_value); con << "Gems:" << std::endl; printMats<df::inorganic_raw, std::greater>(con, gems, world->raws.inorganics, show_value); con << "Other vein stone:" << std::endl; printMats<df::inorganic_raw, std::greater>(con, rest, world->raws.inorganics, show_value); } command_result prospector (color_ostream &out, vector <string> & parameters); DFHACK_PLUGIN("prospector"); DFhackCExport command_result plugin_init ( color_ostream &out, std::vector <PluginCommand> &commands) { commands.push_back(PluginCommand( "prospect", "Show stats of available raw resources.", prospector, false, " Prints a big list of all the present minerals.\n" " By default, only the visible part of the map is scanned.\n" "Options:\n" " all - Scan the whole map, as if it was revealed.\n" " value - Show material value in the output. Most useful for gems.\n" " hell - Show the Z range of HFS tubes. Implies 'all'.\n" "Pre-embark estimate:\n" " If called during the embark selection screen, displays\n" " an estimate of layer stone availability. If the 'all'\n" " option is specified, also estimates veins.\n" " The estimate is computed either for 1 embark tile of the\n" " blinking biome, or for all tiles of the embark rectangle.\n" )); return CR_OK; } DFhackCExport command_result plugin_shutdown ( color_ostream &out ) { return CR_OK; } static coord2d biome_delta[] = { coord2d(-1,1), coord2d(0,1), coord2d(1,1), coord2d(-1,0), coord2d(0,0), coord2d(1,0), coord2d(-1,-1), coord2d(0,-1), coord2d(1,-1) }; static command_result embark_prospector(color_ostream &out, df::viewscreen_choose_start_sitest *screen, bool showHidden, bool showValue) { if (!world || !world->world_data) { out.printerr("World data is not available.\n"); return CR_FAILURE; } df::world_data *data = world->world_data; coord2d cur_region = screen->region_pos; int d_idx = linear_index(data->region_details, &df::world_region_details::pos, cur_region); auto cur_details = vector_get(data->region_details, d_idx); if (!cur_details) { out.printerr("Current region details are not available.\n"); return CR_FAILURE; } // Compute biomes std::map<coord2d, int> biomes; if (screen->biome_highlighted) { out.print("Processing one embark tile of biome F%d.\n\n", screen->biome_idx+1); biomes[screen->biome_rgn[screen->biome_idx]]++; } else { for (int x = screen->embark_pos_min.x; x <= screen->embark_pos_max.x; x++) { for (int y = screen->embark_pos_min.y; y <= screen->embark_pos_max.y; y++) { int bv = clip_range(cur_details->biome[x][y], 1, 9); biomes[cur_region + biome_delta[bv-1]]++; } } } // Compute material maps MatMap layerMats; MatMap veinMats; for (auto biome_it = biomes.begin(); biome_it != biomes.end(); ++biome_it) { int bx = clip_range(biome_it->first.x, 0, data->world_width-1); int by = clip_range(biome_it->first.y, 0, data->world_height-1); auto ®ion = data->region_map[bx][by]; df::world_geo_biome *geo_biome = df::world_geo_biome::find(region.geo_index); if (!geo_biome) { out.printerr("Region geo-biome not found: (%d,%d)\n", bx, by); return CR_FAILURE; } int cnt = biome_it->second; for (unsigned i = 0; i < geo_biome->layers.size(); i++) { auto layer = geo_biome->layers[i]; layerMats[layer->mat_index].add(layer->bottom_height, 0); int level_cnt = layer->top_height - layer->bottom_height + 1; int layer_size = 48*48*cnt*level_cnt; int sums[ENUM_LAST_ITEM(inclusion_type)+1] = { 0 }; for (unsigned j = 0; j < layer->vein_mat.size(); j++) if (is_valid_enum_item<df::inclusion_type>(layer->vein_type[j])) sums[layer->vein_type[j]] += layer->vein_unk_38[j]; for (unsigned j = 0; j < layer->vein_mat.size(); j++) { // TODO: find out how to estimate the real density // this code assumes that vein_unk_38 is the weight // used when choosing the vein material int size = layer->vein_unk_38[j]*cnt*level_cnt; df::inclusion_type type = layer->vein_type[j]; switch (type) { case inclusion_type::VEIN: // 3 veins of 80 tiles avg size = size * 80 * 3 / sums[type]; break; case inclusion_type::CLUSTER: // 1 cluster of 700 tiles avg size = size * 700 * 1 / sums[type]; break; case inclusion_type::CLUSTER_SMALL: size = size * 6 * 7 / sums[type]; break; case inclusion_type::CLUSTER_ONE: size = size * 1 * 5 / sums[type]; break; default: // shouldn't actually happen size = cnt*level_cnt; } veinMats[layer->vein_mat[j]].add(layer->bottom_height, 0); veinMats[layer->vein_mat[j]].add(layer->top_height, size); layer_size -= size; } layerMats[layer->mat_index].add(layer->top_height, std::max(0,layer_size)); } } // Print the report out << "Layer materials:" << std::endl; printMats<df::inorganic_raw, shallower>(out, layerMats, world->raws.inorganics, showValue); if (showHidden) { DFHack::Materials *mats = Core::getInstance().getMaterials(); printVeins(out, veinMats, mats, showValue); mats->Finish(); } out << "Warning: the above data is only a very rough estimate." << std::endl; return CR_OK; } command_result prospector (color_ostream &con, vector <string> & parameters) { bool showHidden = false; bool showPlants = true; bool showSlade = true; bool showTemple = true; bool showValue = false; bool showTube = false; for(size_t i = 0; i < parameters.size();i++) { if (parameters[i] == "all") { showHidden = true; } else if (parameters[i] == "value") { showValue = true; } else if (parameters[i] == "hell") { showHidden = showTube = true; } else return CR_WRONG_USAGE; } CoreSuspender suspend; // Embark screen active: estimate using world geology data if (VIRTUAL_CAST_VAR(screen, df::viewscreen_choose_start_sitest, Core::getTopViewscreen())) return embark_prospector(con, screen, showHidden, showValue); if (!Maps::IsValid()) { con.printerr("Map is not available!\n"); return CR_FAILURE; } uint32_t x_max = 0, y_max = 0, z_max = 0; Maps::getSize(x_max, y_max, z_max); MapExtras::MapCache map; DFHack::Materials *mats = Core::getInstance().getMaterials(); DFHack::t_feature blockFeatureGlobal; DFHack::t_feature blockFeatureLocal; bool hasAquifer = false; bool hasDemonTemple = false; bool hasLair = false; MatMap baseMats; MatMap layerMats; MatMap veinMats; MatMap plantMats; MatMap treeMats; matdata liquidWater; matdata liquidMagma; matdata aquiferTiles; matdata tubeTiles; uint32_t vegCount = 0; for(uint32_t z = 0; z < z_max; z++) { for(uint32_t b_y = 0; b_y < y_max; b_y++) { for(uint32_t b_x = 0; b_x < x_max; b_x++) { // Get the map block df::coord2d blockCoord(b_x, b_y); MapExtras::Block *b = map.BlockAt(DFHack::DFCoord(b_x, b_y, z)); if (!b || !b->is_valid()) { continue; } // Find features b->GetGlobalFeature(&blockFeatureGlobal); b->GetLocalFeature(&blockFeatureLocal); int global_z = world->map.region_z + z; // Iterate over all the tiles in the block for(uint32_t y = 0; y < 16; y++) { for(uint32_t x = 0; x < 16; x++) { df::coord2d coord(x, y); df::tile_designation des = b->DesignationAt(coord); df::tile_occupancy occ = b->OccupancyAt(coord); // Skip hidden tiles if (!showHidden && des.bits.hidden) { continue; } // Check for aquifer if (des.bits.water_table) { hasAquifer = true; aquiferTiles.add(global_z); } // Check for lairs if (occ.bits.monster_lair) { hasLair = true; } // Check for liquid if (des.bits.flow_size) { if (des.bits.liquid_type == tile_liquid::Magma) liquidMagma.add(global_z); else liquidWater.add(global_z); } df::tiletype type = b->tiletypeAt(coord); df::tiletype_shape tileshape = tileShape(type); df::tiletype_material tilemat = tileMaterial(type); // We only care about these types switch (tileshape) { case tiletype_shape::WALL: case tiletype_shape::FORTIFICATION: break; case tiletype_shape::EMPTY: /* A heuristic: tubes inside adamantine have EMPTY:AIR tiles which still have feature_local set. Also check the unrevealed status, so as to exclude any holes mined by the player. */ if (tilemat == tiletype_material::AIR && des.bits.feature_local && des.bits.hidden && blockFeatureLocal.type == feature_type::deep_special_tube) { tubeTiles.add(global_z); } default: continue; } // Count the material type baseMats[tilemat].add(global_z); // Find the type of the tile switch (tilemat) { case tiletype_material::SOIL: case tiletype_material::STONE: layerMats[b->layerMaterialAt(coord)].add(global_z); break; case tiletype_material::MINERAL: veinMats[b->veinMaterialAt(coord)].add(global_z); break; case tiletype_material::FEATURE: if (blockFeatureLocal.type != -1 && des.bits.feature_local) { if (blockFeatureLocal.type == feature_type::deep_special_tube && blockFeatureLocal.main_material == 0) // stone { veinMats[blockFeatureLocal.sub_material].add(global_z); } else if (showTemple && blockFeatureLocal.type == feature_type::deep_surface_portal) { hasDemonTemple = true; } } if (showSlade && blockFeatureGlobal.type != -1 && des.bits.feature_global && blockFeatureGlobal.type == feature_type::feature_underworld_from_layer && blockFeatureGlobal.main_material == 0) // stone { layerMats[blockFeatureGlobal.sub_material].add(global_z); } break; case tiletype_material::LAVA_STONE: // TODO ? break; } } } // Check plants this way, as the other way wasn't getting them all // and we can check visibility more easily here if (showPlants) { auto block = Maps::getBlock(b_x,b_y,z); vector<df::plant *> *plants = block ? &block->plants : NULL; if(plants) { for (PlantList::const_iterator it = plants->begin(); it != plants->end(); it++) { const df::plant & plant = *(*it); df::coord2d loc(plant.pos.x, plant.pos.y); loc = loc % 16; if (showHidden || !b->DesignationAt(loc).bits.hidden) { if(plant.flags.bits.is_shrub) plantMats[plant.material].add(global_z); else treeMats[plant.material].add(global_z); } } } } // Block end } // block x // Clean uneeded memory map.trash(); } // block y } // z MatMap::const_iterator it; con << "Base materials:" << std::endl; for (it = baseMats.begin(); it != baseMats.end(); ++it) { con << std::setw(25) << ENUM_KEY_STR(tiletype_material,(df::tiletype_material)it->first) << " : " << it->second.count << std::endl; } if (liquidWater.count || liquidMagma.count) { con << std::endl << "Liquids:" << std::endl; if (liquidWater.count) { con << std::setw(25) << "WATER" << " : "; printMatdata(con, liquidWater); } if (liquidWater.count) { con << std::setw(25) << "MAGMA" << " : "; printMatdata(con, liquidMagma); } } con << std::endl << "Layer materials:" << std::endl; printMats<df::inorganic_raw, shallower>(con, layerMats, world->raws.inorganics, showValue); printVeins(con, veinMats, mats, showValue); if (showPlants) { con << "Shrubs:" << std::endl; printMats<df::plant_raw, std::greater>(con, plantMats, world->raws.plants.all, showValue); con << "Wood in trees:" << std::endl; printMats<df::plant_raw, std::greater>(con, treeMats, world->raws.plants.all, showValue); } if (hasAquifer) { con << "Has aquifer"; if (aquiferTiles.count) { con << " : "; printMatdata(con, aquiferTiles); } else con << std::endl; } if (showTube && tubeTiles.count) { con << "Has HFS tubes : "; printMatdata(con, tubeTiles); } if (hasDemonTemple) { con << "Has demon temple" << std::endl; } if (hasLair) { con << "Has lair" << std::endl; } // Cleanup mats->Finish(); con << std::endl; return CR_OK; }