#include #include // for CHAR_BIT #include "df/building_design.h" #include "df/building_doorst.h" #include "df/building_type.h" #include "df/general_ref_building_holderst.h" #include "df/job_item.h" #include "df/ui_build_selector.h" #include "modules/Buildings.h" #include "modules/Gui.h" #include "modules/Job.h" #include "uicommon.h" #include "buildingplan-planner.h" #include "buildingplan-lib.h" static const std::string planned_building_persistence_key_v1 = "buildingplan/constraints"; /* * ItemFilter */ ItemFilter::ItemFilter() { clear(); } void ItemFilter::clear() { min_quality = df::item_quality::Ordinary; max_quality = df::item_quality::Masterful; decorated_only = false; clearMaterialMask(); materials.clear(); } bool ItemFilter::deserialize(PersistentDataItem &config) { clear(); std::vector tokens; split_string(&tokens, config.val(), "/"); if (tokens.size() != 2) { debug("invalid ItemFilter serialization: '%s'", config.val().c_str()); return false; } if (!deserializeMaterialMask(tokens[0]) || !deserializeMaterials(tokens[1])) return false; setMinQuality(config.ival(2) - 1); setMaxQuality(config.ival(4) - 1); decorated_only = config.ival(3) - 1; return true; } bool ItemFilter::deserializeMaterialMask(std::string ser) { if (ser.empty()) return true; if (!parseJobMaterialCategory(&mat_mask, ser)) { debug("invalid job material category serialization: '%s'", ser.c_str()); return false; } return true; } bool ItemFilter::deserializeMaterials(std::string ser) { if (ser.empty()) return true; std::vector mat_names; split_string(&mat_names, ser, ","); for (auto m = mat_names.begin(); m != mat_names.end(); m++) { DFHack::MaterialInfo material; if (!material.find(*m) || !material.isValid()) { debug("invalid material name serialization: '%s'", ser.c_str()); return false; } materials.push_back(material); } return true; } void ItemFilter::serialize(PersistentDataItem &config) const { std::ostringstream ser; ser << bitfield_to_string(mat_mask, ",") << "/"; if (!materials.empty()) { ser << materials[0].getToken(); for (size_t i = 1; i < materials.size(); ++i) ser << "," << materials[i].getToken(); } config.val() = ser.str(); config.ival(2) = min_quality + 1; config.ival(4) = max_quality + 1; config.ival(3) = static_cast(decorated_only) + 1; } void ItemFilter::clearMaterialMask() { mat_mask.whole = 0; } void ItemFilter::addMaterialMask(uint32_t mask) { mat_mask.whole |= mask; } void ItemFilter::setMaterials(std::vector materials) { this->materials = materials; } static void clampItemQuality(df::item_quality *quality) { if (*quality > item_quality::Artifact) { debug("clamping quality to Artifact"); *quality = item_quality::Artifact; } if (*quality < item_quality::Ordinary) { debug("clamping quality to Ordinary"); *quality = item_quality::Ordinary; } } void ItemFilter::setMinQuality(int quality) { min_quality = static_cast(quality); clampItemQuality(&min_quality); if (max_quality < min_quality) max_quality = min_quality; } void ItemFilter::setMaxQuality(int quality) { max_quality = static_cast(quality); clampItemQuality(&max_quality); if (max_quality < min_quality) min_quality = max_quality; } void ItemFilter::incMinQuality() { setMinQuality(min_quality + 1); } void ItemFilter::decMinQuality() { setMinQuality(min_quality - 1); } void ItemFilter::incMaxQuality() { setMaxQuality(max_quality + 1); } void ItemFilter::decMaxQuality() { setMaxQuality(max_quality - 1); } void ItemFilter::toggleDecoratedOnly() { decorated_only = !decorated_only; } static std::string material_to_string_fn(const MaterialInfo &m) { return m.toString(); } uint32_t ItemFilter::getMaterialMask() const { return mat_mask.whole; } std::vector ItemFilter::getMaterials() const { std::vector descriptions; transform_(materials, descriptions, material_to_string_fn); if (descriptions.size() == 0) bitfield_to_string(&descriptions, mat_mask); if (descriptions.size() == 0) descriptions.push_back("any"); return descriptions; } std::string ItemFilter::getMinQuality() const { return ENUM_KEY_STR(item_quality, min_quality); } std::string ItemFilter::getMaxQuality() const { return ENUM_KEY_STR(item_quality, max_quality); } bool ItemFilter::getDecoratedOnly() const { return decorated_only; } bool ItemFilter::matchesMask(DFHack::MaterialInfo &mat) const { return mat_mask.whole ? mat.matches(mat_mask) : true; } bool ItemFilter::matches(df::dfhack_material_category mask) const { return mask.whole & mat_mask.whole; } bool ItemFilter::matches(DFHack::MaterialInfo &material) const { for (auto it = materials.begin(); it != materials.end(); ++it) if (material.matches(*it)) return true; return false; } bool ItemFilter::matches(df::item *item) const { if (item->getQuality() < min_quality || item->getQuality() > max_quality) return false; if (decorated_only && !item->hasImprovements()) return false; auto imattype = item->getActualMaterial(); auto imatindex = item->getActualMaterialIndex(); auto item_mat = DFHack::MaterialInfo(imattype, imatindex); return (materials.size() == 0) ? matchesMask(item_mat) : matches(item_mat); } /* * PlannedBuilding */ static std::vector deserializeFilters(PersistentDataItem &config) { // simplified implementation while we can assume there is only one filter std::vector ret; ItemFilter itemFilter; itemFilter.deserialize(config); ret.push_back(itemFilter); return ret; } static size_t getNumFilters(BuildingTypeKey key) { // TODO: get num filters in Lua when we handle all building types return 1; } PlannedBuilding::PlannedBuilding(df::building *building, const std::vector &filters) : building(building), building_id(building->id), filters(filters) { config = DFHack::World::AddPersistentData(planned_building_persistence_key_v1); config.ival(1) = building_id; // assume all filter vectors are length 1 for now filters[0].serialize(config); } PlannedBuilding::PlannedBuilding(PersistentDataItem &config) : config(config), building(df::building::find(config.ival(1))), building_id(config.ival(1)), filters(deserializeFilters(config)) { } bool PlannedBuilding::assignClosestItem(std::vector *items_vector) { decltype(items_vector->begin()) closest_item; int32_t closest_distance = -1; for (auto item_iter = items_vector->begin(); item_iter != items_vector->end(); item_iter++) { auto item = *item_iter; if (!filters[0].matches(item)) continue; auto pos = item->pos; auto distance = abs(pos.x - building->centerx) + abs(pos.y - building->centery) + abs(pos.z - building->z) * 50; if (closest_distance > -1 && distance >= closest_distance) continue; closest_distance = distance; closest_item = item_iter; } if (closest_distance > -1 && assignItem(*closest_item)) { debug("Item assigned"); items_vector->erase(closest_item); remove(); return true; } return false; } void delete_item_fn(df::job_item *x) { delete x; } bool PlannedBuilding::assignItem(df::item *item) { auto ref = df::allocate(); if (!ref) { Core::printerr("Could not allocate general_ref_building_holderst\n"); return false; } ref->building_id = building->id; if (building->jobs.size() != 1) return false; auto job = building->jobs[0]; for_each_(job->job_items, delete_item_fn); job->job_items.clear(); job->flags.bits.suspend = false; bool rough = false; Job::attachJobItem(job, item, df::job_item_ref::Hauled); if (item->getType() == item_type::BOULDER) rough = true; building->mat_type = item->getMaterial(); building->mat_index = item->getMaterialIndex(); job->mat_type = building->mat_type; job->mat_index = building->mat_index; if (building->needsDesign()) { auto act = (df::building_actual *) building; act->design = new df::building_design(); act->design->flags.bits.rough = rough; } return true; } // Ensure the building still exists and is in a valid state. It can disappear // for lots of reasons, such as running the game with the buildingplan plugin // disabled, manually removing the building, modifying it via the API, etc. bool PlannedBuilding::isValid() const { return building && df::building::find(building_id) && building->getBuildStage() == 0; } void PlannedBuilding::remove() { DFHack::World::DeletePersistentData(config); building = NULL; } df::building * PlannedBuilding::getBuilding() { return building; } const std::vector & PlannedBuilding::getFilters() const { return filters; } /* * BuildingTypeKey */ BuildingTypeKey toBuildingTypeKey( df::building_type btype, int16_t subtype, int32_t custom) { return std::make_tuple(btype, subtype, custom); } BuildingTypeKey toBuildingTypeKey(df::building *bld) { return std::make_tuple( bld->getType(), bld->getSubtype(), bld->getCustomType()); } BuildingTypeKey toBuildingTypeKey(df::ui_build_selector *uibs) { return std::make_tuple( uibs->building_type, uibs->building_subtype, uibs->custom_type); } // rotates a size_t value left by count bits // assumes count is not 0 or >= size_t_bits // replace this with std::rotl when we move to C++20 static std::size_t rotl_size_t(size_t val, uint32_t count) { static const int size_t_bits = CHAR_BIT * sizeof(std::size_t); return val << count | val >> (size_t_bits - count); } std::size_t BuildingTypeKeyHash::operator() (const BuildingTypeKey & key) const { // cast first param to appease gcc-4.8, which is missing the enum // specializations for std::hash std::size_t h1 = std::hash()(static_cast(std::get<0>(key))); std::size_t h2 = std::hash()(std::get<1>(key)); std::size_t h3 = std::hash()(std::get<2>(key)); return h1 ^ rotl_size_t(h2, 8) ^ rotl_size_t(h3, 16); } /* * Planner */ void Planner::initialize() { #define add_building_type(btype, itype) \ item_for_building_type[df::building_type::btype] = df::item_type::itype; \ available_item_vectors[df::item_type::itype] = std::vector(); \ is_relevant_item_type[df::item_type::itype] = true; \ FOR_ENUM_ITEMS(item_type, it) is_relevant_item_type[it] = false; add_building_type(Armorstand, ARMORSTAND); add_building_type(Bed, BED); add_building_type(Chair, CHAIR); add_building_type(Coffin, COFFIN); add_building_type(Door, DOOR); add_building_type(Floodgate, FLOODGATE); add_building_type(Hatch, HATCH_COVER); add_building_type(GrateWall, GRATE); add_building_type(GrateFloor, GRATE); add_building_type(BarsVertical, BAR); add_building_type(BarsFloor, BAR); add_building_type(Cabinet, CABINET); add_building_type(Box, BOX); // skip kennels, farm plot add_building_type(Weaponrack, WEAPONRACK); add_building_type(Statue, STATUE); add_building_type(Slab, SLAB); add_building_type(Table, TABLE); // skip roads ... furnaces add_building_type(WindowGlass, WINDOW); // skip gem window ... support add_building_type(AnimalTrap, ANIMALTRAP); add_building_type(Chain, CHAIN); add_building_type(Cage, CAGE); // skip archery target add_building_type(TractionBench, TRACTION_BENCH); // skip nest box, hive (tools) #undef add_building_type } void Planner::reset() { debug("resetting Planner state"); default_item_filters.clear(); planned_buildings.clear(); std::vector items; DFHack::World::GetPersistentData(&items, planned_building_persistence_key_v1); debug("found data for %zu planned buildings", items.size()); for (auto i = items.begin(); i != items.end(); i++) { PlannedBuilding pb(*i); if (!pb.isValid()) { pb.remove(); continue; } planned_buildings.push_back(pb); } } void Planner::addPlannedBuilding(df::building *bld) { auto item_filters = getItemFilters(toBuildingTypeKey(bld)).get(); // not a supported type if (item_filters.empty()) { debug("failed to add building: unsupported type"); return; } // protect against multiple registrations if (getPlannedBuilding(bld)) { debug("building already registered"); return; } PlannedBuilding pb(bld, item_filters); if (pb.isValid()) { for (auto job : bld->jobs) job->flags.bits.suspend = true; planned_buildings.push_back(pb); } else { pb.remove(); } } PlannedBuilding * Planner::getPlannedBuilding(df::building *bld) { for (auto & pb : planned_buildings) { if (pb.getBuilding() == bld) return &pb; } return NULL; } bool Planner::isPlannableBuilding(BuildingTypeKey key) { return item_for_building_type.count(std::get<0>(key)) > 0; } Planner::ItemFiltersWrapper Planner::getItemFilters(BuildingTypeKey key) { static std::vector empty_vector; static const ItemFiltersWrapper empty_ret(empty_vector); size_t nfilters = getNumFilters(key); if (nfilters < 1) return empty_ret; while (default_item_filters[key].size() < nfilters) default_item_filters[key].push_back(ItemFilter()); return ItemFiltersWrapper(default_item_filters[key]); } void Planner::doCycle() { debug("Running Cycle"); if (planned_buildings.size() == 0) return; debug("Planned count: %zu", planned_buildings.size()); gather_available_items(); for (auto building_iter = planned_buildings.begin(); building_iter != planned_buildings.end();) { if (building_iter->isValid()) { auto type = building_iter->getBuilding()->getType(); debug("Trying to allocate %s", enum_item_key_str(type)); auto required_item_type = item_for_building_type[type]; auto items_vector = &available_item_vectors[required_item_type]; if (items_vector->size() == 0 || !building_iter->assignClosestItem(items_vector)) { debug("Unable to allocate an item"); ++building_iter; continue; } } debug("Removing building plan"); building_iter->remove(); building_iter = planned_buildings.erase(building_iter); } } void Planner::gather_available_items() { debug("Gather available items"); for (auto iter = available_item_vectors.begin(); iter != available_item_vectors.end(); iter++) { iter->second.clear(); } // Precompute a bitmask with the bad flags df::item_flags bad_flags; bad_flags.whole = 0; #define F(x) bad_flags.bits.x = true; F(dump); F(forbid); F(garbage_collect); F(hostile); F(on_fire); F(rotten); F(trader); F(in_building); F(construction); F(artifact); #undef F std::vector &items = df::global::world->items.other[df::items_other_id::IN_PLAY]; for (size_t i = 0; i < items.size(); i++) { df::item *item = items[i]; if (item->flags.whole & bad_flags.whole) continue; df::item_type itype = item->getType(); if (!is_relevant_item_type[itype]) continue; if (itype == df::item_type::BOX && item->isBag()) continue; //Skip bags if (item->flags.bits.artifact) continue; if (item->flags.bits.in_job || item->isAssignedToStockpile() || item->flags.bits.owned || item->flags.bits.in_chest) { continue; } available_item_vectors[itype].push_back(item); } } Planner planner;