/* www.sourceforge.net/projects/dfhack Copyright (c) 2009 Petr Mrázek (peterix), Kenneth Ferland (Impaler[WrG]), dorf This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #include "Internal.h" #include "PlatformInternal.h" #include #include #include #include #include #include using namespace std; #include "ProcessFactory.h" #include "MicrosoftSTL.h" #include "dfhack/VersionInfo.h" #include "dfhack/DFError.h" using namespace DFHack; namespace { class NormalProcess : public Process { private: VersionInfo * my_descriptor; HANDLE my_handle; vector threads; vector stoppedthreads; uint32_t my_pid; string memFile; bool attached; bool suspended; bool identified; uint8_t vector_start; IMAGE_NT_HEADERS pe_header; IMAGE_SECTION_HEADER * sections; uint32_t base; MicrosoftSTL stl; public: NormalProcess(uint32_t pid, VersionInfoFactory * factory); ~NormalProcess(); bool attach(); bool detach(); bool suspend(); bool asyncSuspend(); bool resume(); bool forceresume(); void readQuad(const uint32_t address, uint64_t & value); void writeQuad(const uint32_t address, const uint64_t value); void readDWord(const uint32_t address, uint32_t & value); void writeDWord(const uint32_t address, const uint32_t value); void readFloat(const uint32_t address, float & value); void readWord(const uint32_t address, uint16_t & value); void writeWord(const uint32_t address, const uint16_t value); void readByte(const uint32_t address, uint8_t & value); void writeByte(const uint32_t address, const uint8_t value); void read( uint32_t address, uint32_t length, uint8_t* buffer); void write(uint32_t address, uint32_t length, uint8_t* buffer); void readSTLVector(const uint32_t address, t_vecTriplet & triplet); void writeSTLVector(const uint32_t address, t_vecTriplet & triplet); const std::string readSTLString (uint32_t offset); size_t readSTLString (uint32_t offset, char * buffer, size_t bufcapacity); size_t writeSTLString(const uint32_t address, const std::string writeString); // get class name of an object with rtti/type info std::string doReadClassName(uint32_t vptr); const std::string readCString (uint32_t offset); bool isSuspended(); bool isAttached(); bool isIdentified(); bool getThreadIDs(std::vector & threads ); void getMemRanges(std::vector & ranges ); VersionInfo *getDescriptor(); int getPID(); std::string getPath(); // get module index by name and version. bool 1 = error bool getModuleIndex (const char * name, const uint32_t version, uint32_t & OUTPUT) { OUTPUT=0; return false;}; // get the SHM start if available char * getSHMStart (void){return 0;}; // set a SHM command and wait for a response bool SetAndWait (uint32_t state){return false;}; }; } Process* DFHack::createNormalProcess(uint32_t pid, VersionInfoFactory * factory) { return new NormalProcess(pid, factory); } NormalProcess::NormalProcess(uint32_t pid, VersionInfoFactory * factory) : my_pid(pid) { my_descriptor = NULL; attached = false; suspended = false; base = 0; sections = 0; HMODULE hmod = NULL; DWORD needed; bool found = false; identified = false; // open process my_handle = OpenProcess( PROCESS_ALL_ACCESS, FALSE, my_pid ); if (NULL == my_handle) return; // try getting the first module of the process if(EnumProcessModules(my_handle, &hmod, sizeof(hmod), &needed) == 0) { CloseHandle(my_handle); my_handle=0; // cout << "EnumProcessModules fail'd" << endl; return; //if enumprocessModules fails, give up } // got base ;) base = (uint32_t)hmod; // read from this process try { uint32_t pe_offset = Process::readDWord(base+0x3C); read(base + pe_offset , sizeof(pe_header), (uint8_t *)&pe_header); const size_t sectionsSize = sizeof(IMAGE_SECTION_HEADER) * pe_header.FileHeader.NumberOfSections; sections = (IMAGE_SECTION_HEADER *) malloc(sectionsSize); read(base + pe_offset + sizeof(pe_header), sectionsSize, (uint8_t *)sections); } catch (exception &) { CloseHandle(my_handle); my_handle = 0; return; } //cout << "PE Timestamp: " << hex << pe_header.FileHeader.TimeDateStamp << dec << endl; VersionInfo* vinfo = factory->getVersionInfoByPETimestamp(pe_header.FileHeader.TimeDateStamp); if(vinfo) { /* cout << "Using version " << vinfo->getName() << ". Offsets follow:" << endl; cout << "--------------------------------------------------------------" << endl; cout << vinfo->PrintOffsets(); cout << "--------------------------------------------------------------" << endl; */ // only enumerate threads if this is a valid DF process. the enumeration is costly. vector threads_ids; if(!getThreadIDs( threads_ids )) { // thread enumeration failed. CloseHandle(my_handle); my_handle = 0; return; } identified = true; // give the process a data model and memory layout fixed for the base of first module my_descriptor = new VersionInfo(*vinfo); my_descriptor->RebaseAll(base); // keep track of created memory_info object so we can destroy it later my_descriptor->setParentProcess(this); try { vector_start = my_descriptor->getGroup("vector")->getOffset("start"); stl.init(this); } catch (DFHack::Error::UnsetMemoryDefinition &) { CloseHandle(my_handle); my_handle = 0; identified = false; return; } for(size_t i = 0; i < threads_ids.size();i++) { HANDLE hThread = OpenThread(THREAD_ALL_ACCESS, FALSE, (DWORD) threads_ids[i]); if(hThread) threads.push_back(hThread); else cerr << "Unable to open thread :" << hex << (DWORD) threads_ids[i] << endl; } } else { // close handles of processes that aren't DF //cout << "ABOUT TO FREE HANDLE" << endl; CloseHandle(my_handle); //cout << "FREE'D HANDLE" << endl; my_handle = 0; } } NormalProcess::~NormalProcess() { if(attached) { detach(); } // destroy our rebased copy of the memory descriptor delete my_descriptor; if(my_handle != NULL) { CloseHandle(my_handle); } for(size_t i = 0; i < threads.size(); i++) CloseHandle(threads[i]); if(sections != NULL) free(sections); } VersionInfo * NormalProcess::getDescriptor() { return my_descriptor; } int NormalProcess::getPID() { return my_pid; } bool NormalProcess::isSuspended() { return suspended; } bool NormalProcess::isAttached() { return attached; } bool NormalProcess::isIdentified() { return identified; } bool NormalProcess::asyncSuspend() { return suspend(); } bool NormalProcess::suspend() { if(!attached) return false; if(suspended) { return true; } for(size_t i = 0; i < threads.size(); i++) { stoppedthreads.push_back(threads[i]); SuspendThread(threads[i]); } suspended = true; return true; } bool NormalProcess::forceresume() { if(!attached) return false; for(size_t i = 0; i < threads.size(); i++) while (ResumeThread(threads[i]) > 1); suspended = false; return true; } bool NormalProcess::resume() { if(!attached) return false; if(!suspended) { return true; } for(size_t i = 0; i < stoppedthreads.size(); i++) ResumeThread(stoppedthreads[i]); stoppedthreads.clear(); suspended = false; return true; } bool NormalProcess::attach() { if(attached) { if(!suspended) return suspend(); return true; } attached = true; suspend(); return true; } bool NormalProcess::detach() { if(!attached) return true; resume(); attached = false; return true; } bool NormalProcess::getThreadIDs(vector & threads ) { HANDLE AllThreads = INVALID_HANDLE_VALUE; THREADENTRY32 te32; AllThreads = CreateToolhelp32Snapshot( TH32CS_SNAPTHREAD, 0 ); if( AllThreads == INVALID_HANDLE_VALUE ) { return false; } te32.dwSize = sizeof(THREADENTRY32 ); if( !Thread32First( AllThreads, &te32 ) ) { CloseHandle( AllThreads ); return false; } do { if( te32.th32OwnerProcessID == my_pid ) { threads.push_back(te32.th32ThreadID); } } while( Thread32Next(AllThreads, &te32 ) ); CloseHandle( AllThreads ); return true; } /* typedef struct _MEMORY_BASIC_INFORMATION { void * BaseAddress; void * AllocationBase; uint32_t AllocationProtect; size_t RegionSize; uint32_t State; uint32_t Protect; uint32_t Type; } MEMORY_BASIC_INFORMATION, *PMEMORY_BASIC_INFORMATION; */ /* //Internal structure used to store heap block information. struct HeapBlock { PVOID dwAddress; DWORD dwSize; DWORD dwFlags; ULONG reserved; }; */ void HeapNodes(DWORD pid, map & heaps) { // Create debug buffer PDEBUG_BUFFER db = RtlCreateQueryDebugBuffer(0, FALSE); // Get process heap data RtlQueryProcessDebugInformation( pid, PDI_HEAPS/* | PDI_HEAP_BLOCKS*/, db); ULONG heapNodeCount = db->HeapInformation ? *PULONG(db->HeapInformation):0; PDEBUG_HEAP_INFORMATION heapInfo = PDEBUG_HEAP_INFORMATION(PULONG(db-> HeapInformation) + 1); // Go through each of the heap nodes and dispaly the information for (unsigned int i = 0; i < heapNodeCount; i++) { heaps[heapInfo[i].Base] = i; } // Clean up the buffer RtlDestroyQueryDebugBuffer( db ); } // FIXME: NEEDS TESTING! void NormalProcess::getMemRanges( vector & ranges ) { MEMORY_BASIC_INFORMATION MBI; map heaps; uint64_t movingStart = 0; map nameMap; // get page size SYSTEM_INFO si; GetSystemInfo(&si); uint64_t PageSize = si.dwPageSize; // enumerate heaps HeapNodes(my_pid, heaps); // go through all the VM regions, convert them to our internal format while (VirtualQueryEx(this->my_handle, (const void*) (movingStart), &MBI, sizeof(MBI)) == sizeof(MBI)) { movingStart = ((uint64_t)MBI.BaseAddress + MBI.RegionSize); if(movingStart % PageSize != 0) movingStart = (movingStart / PageSize + 1) * PageSize; // skip empty regions and regions we share with other processes (DLLs) if( !(MBI.State & MEM_COMMIT) /*|| !(MBI.Type & MEM_PRIVATE)*/ ) continue; t_memrange temp; temp.start = (uint64_t) MBI.BaseAddress; temp.end = ((uint64_t)MBI.BaseAddress + (uint64_t)MBI.RegionSize); temp.read = MBI.Protect & PAGE_EXECUTE_READ || MBI.Protect & PAGE_EXECUTE_READWRITE || MBI.Protect & PAGE_READONLY || MBI.Protect & PAGE_READWRITE; temp.write = MBI.Protect & PAGE_EXECUTE_READWRITE || MBI.Protect & PAGE_READWRITE; temp.execute = MBI.Protect & PAGE_EXECUTE_READ || MBI.Protect & PAGE_EXECUTE_READWRITE || MBI.Protect & PAGE_EXECUTE; temp.valid = true; if(!GetModuleBaseName(this->my_handle, (HMODULE) temp.start, temp.name, 1024)) { if(nameMap.count(temp.start)) { // potential buffer overflow... strcpy(temp.name, nameMap[temp.start].c_str()); } else { // filter away shared segments without a name. if( !(MBI.Type & MEM_PRIVATE) ) continue; else { // could be a heap? if(heaps.count(temp.start)) { sprintf(temp.name,"HEAP %d",heaps[temp.start]); } else temp.name[0]=0; } } } else { // this is our executable! (could be generalized to pull segments from libs, but whatever) if(base == temp.start) { for(int i = 0; i < pe_header.FileHeader.NumberOfSections; i++) { char sectionName[9]; memcpy(sectionName,sections[i].Name,8); sectionName[8] = 0; string nm; nm.append(temp.name); nm.append(" : "); nm.append(sectionName); nameMap[temp.start + sections[i].VirtualAddress] = nm; } } else continue; } ranges.push_back(temp); } } void NormalProcess::readByte (const uint32_t offset,uint8_t &result) { if(!ReadProcessMemory(my_handle, (int*) offset, &result, sizeof(uint8_t), NULL)) throw Error::MemoryAccessDenied(offset); } void NormalProcess::readWord (const uint32_t offset, uint16_t &result) { if(!ReadProcessMemory(my_handle, (int*) offset, &result, sizeof(uint16_t), NULL)) throw Error::MemoryAccessDenied(offset); } void NormalProcess::readDWord (const uint32_t offset, uint32_t &result) { if(!ReadProcessMemory(my_handle, (int*) offset, &result, sizeof(uint32_t), NULL)) throw Error::MemoryAccessDenied(offset); } void NormalProcess::readQuad (const uint32_t offset, uint64_t &result) { if(!ReadProcessMemory(my_handle, (int*) offset, &result, sizeof(uint64_t), NULL)) throw Error::MemoryAccessDenied(offset); } void NormalProcess::readFloat (const uint32_t offset, float &result) { if(!ReadProcessMemory(my_handle, (int*) offset, &result, sizeof(float), NULL)) throw Error::MemoryAccessDenied(offset); } void NormalProcess::read (const uint32_t offset, uint32_t size, uint8_t *target) { if(!ReadProcessMemory(my_handle, (int*) offset, target, size, NULL)) throw Error::MemoryAccessDenied(offset); } // WRITING void NormalProcess::writeQuad (const uint32_t offset, uint64_t data) { if(!WriteProcessMemory(my_handle, (int*) offset, &data, sizeof(data), NULL)) throw Error::MemoryAccessDenied(offset); } void NormalProcess::writeDWord (const uint32_t offset, uint32_t data) { if(!WriteProcessMemory(my_handle, (int*) offset, &data, sizeof(data), NULL)) throw Error::MemoryAccessDenied(offset); } // using these is expensive. void NormalProcess::writeWord (uint32_t offset, uint16_t data) { if(!WriteProcessMemory(my_handle, (int*) offset, &data, sizeof(data), NULL)) throw Error::MemoryAccessDenied(offset); } void NormalProcess::writeByte (uint32_t offset, uint8_t data) { if(!WriteProcessMemory(my_handle, (int*) offset, &data, sizeof(data), NULL)) throw Error::MemoryAccessDenied(offset); } void NormalProcess::write (uint32_t offset, uint32_t size, uint8_t *source) { if(!WriteProcessMemory(my_handle, (int*) offset, source, size, NULL)) throw Error::MemoryAccessDenied(offset); } // FIXME: could exploit the fact we can read more than one byte... but still, this is almost unused. const std::string NormalProcess::readCString (const uint32_t offset) { std::string temp; int counter = 0; char r; while (1) { if(!ReadProcessMemory(my_handle, (int*) (offset + counter), &r, sizeof(uint8_t), NULL)) break; r = Process::readByte(offset+counter); // order is important. even if the first character is \0, we cound that as a success. It's an empty string. counter++; if(!r) break; temp.append(1,r); } if(!counter) throw Error::MemoryAccessDenied(offset); return temp; } void NormalProcess::readSTLVector(const uint32_t address, t_vecTriplet & triplet) { read(address + vector_start, sizeof(triplet), (uint8_t *) &triplet); } void NormalProcess::writeSTLVector(const uint32_t address, t_vecTriplet & triplet) { write(address + vector_start, sizeof(triplet), (uint8_t *) &triplet); } size_t NormalProcess::readSTLString (uint32_t offset, char * buffer, size_t bufcapacity) { return stl.readSTLString(offset, buffer, bufcapacity); } const string NormalProcess::readSTLString (uint32_t offset) { return stl.readSTLString(offset); } size_t NormalProcess::writeSTLString (uint32_t address, string str) { return stl.writeSTLString(address, str); } string NormalProcess::doReadClassName (uint32_t vptr) { return stl.readClassName(vptr); } string NormalProcess::getPath() { HMODULE hmod; DWORD junk; char String[255]; EnumProcessModules(my_handle, &hmod, 1 * sizeof(HMODULE), &junk); //get the module from the handle GetModuleFileNameEx(my_handle,hmod,String,sizeof(String)); //get the filename from the module string out(String); return(out.substr(0,out.find_last_of("\\"))); }