/* www.sourceforge.net/projects/dfhack Copyright (c) 2009 Petr Mrázek (peterix), Kenneth Ferland (Impaler[WrG]), dorf This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #include "DFCommonInternal.h" #include "../shmserver/shms.h" #include "../shmserver/shms-core.h" using namespace DFHack; // a full memory barrier! better be safe than sorry. class Process::Private { public: Private() { my_descriptor = NULL; my_pid = 0; my_shm = 0; my_window = NULL; attached = false; suspended = false; identified = false; useYield = 0; DFSVMutex = 0; DFCLMutex = 0; }; ~Private(){}; memory_info * my_descriptor; DFWindow * my_window; uint32_t my_pid; char *my_shm; HANDLE DFSVMutex; HANDLE DFCLMutex; bool attached; bool suspended; bool identified; bool useYield; bool waitWhile (CORE_COMMAND state); bool isValidSV(); bool DF_TestBridgeVersion(bool & ret); bool DF_GetPID(uint32_t & ret); void DF_SyncAffinity(void); }; // some helpful macros to keep the code bloat in check #define SHMCMD ((shm_cmd *)my_shm)->pingpong #define D_SHMCMD ((shm_cmd *)d->my_shm)->pingpong #define SHMHDR ((shm_core_hdr *)my_shm) #define D_SHMHDR ((shm_core_hdr *)d->my_shm) // is the other side still there? bool Process::Private::isValidSV() { // try if CL mutex is free uint32_t result = WaitForSingleObject(DFSVMutex,0); switch (result) { case WAIT_ABANDONED: case WAIT_OBJECT_0: { ReleaseMutex(DFSVMutex); return false; } case WAIT_TIMEOUT: { // mutex is held by DF return true; } default: case WAIT_FAILED: { // TODO: now how do I respond to this? return false; } } } bool Process::Private::waitWhile (CORE_COMMAND state) { uint32_t cnt = 0; while (((shm_cmd *)my_shm)->pingpong == state) { // yield the CPU, only on single-core CPUs if(useYield) { SCHED_YIELD } if(cnt == 10000) { if(!isValidSV())// DF not there anymore? { ((shm_cmd *)my_shm)->pingpong = CORE_RUNNING; attached = suspended = false; ReleaseMutex(DFCLMutex); return false; } else { cnt = 0; } } cnt++; } if(((shm_cmd *)my_shm)->pingpong == CORE_SV_ERROR) { ((shm_cmd *)my_shm)->pingpong = CORE_RUNNING; attached = suspended = false; cerr << "shm server error!" << endl; return false; } return true; } bool Process::Private::DF_TestBridgeVersion(bool & ret) { ((shm_cmd *)my_shm)->pingpong = CORE_GET_VERSION; full_barrier if(!waitWhile(CORE_GET_VERSION)) return false; full_barrier ((shm_cmd *)my_shm)->pingpong = CORE_SUSPENDED; ret =( ((shm_val *)my_shm)->value == CORE_VERSION ); return true; } bool Process::Private::DF_GetPID(uint32_t & ret) { ((shm_cmd *)my_shm)->pingpong = CORE_GET_PID; full_barrier if(!waitWhile(CORE_GET_PID)) return false; full_barrier ((shm_cmd *)my_shm)->pingpong = CORE_SUSPENDED; ret = ((shm_val *)my_shm)->value; return true; } void Process::Private::DF_SyncAffinity(void) { } uint32_t OS_getAffinity() { HANDLE hProcess = GetCurrentProcess(); DWORD dwProcessAffinityMask, dwSystemAffinityMask; GetProcessAffinityMask( hProcess, &dwProcessAffinityMask, &dwSystemAffinityMask ); return dwProcessAffinityMask; } void Process::Private::DF_SyncAffinity( void ) { SHMHDR->value = OS_getAffinity(); full_barrier SHMCMD = CORE_SYNC_YIELD; full_barrier if(!waitWhile(CORE_SYNC_YIELD)) return; full_barrier SHMCMD = CORE_SUSPENDED; useYield = SHMHDR->value; if(useYield) cerr << "Using Yield!" << endl; } Process::Process(vector & known_versions) : d(new Private()) { // get server and client mutex d->DFSVMutex = OpenMutex(SYNCHRONIZE,false, "DFSVMutex"); if(d->DFSVMutex == 0) { return; } d->DFCLMutex = OpenMutex(SYNCHRONIZE,false, "DFCLMutex"); if(d->DFCLMutex == 0) { return; } if(!attach()) { return; } // All seems to be OK so far. Attached and connected to something that looks like DF // Test bridge version, will also detect when we connect to something that doesn't respond bool bridgeOK; if(!d->DF_TestBridgeVersion(bridgeOK)) { fprintf(stderr,"DF terminated during reading\n"); UnmapViewOfFile(d->my_shm); ReleaseMutex(d->DFCLMutex); CloseHandle(d->DFSVMutex); d->DFSVMutex = 0; CloseHandle(d->DFCLMutex); d->DFCLMutex = 0; return; } if(!bridgeOK) { fprintf(stderr,"SHM bridge version mismatch\n"); ((shm_cmd *)d->my_shm)->pingpong = CORE_RUNNING; UnmapViewOfFile(d->my_shm); ReleaseMutex(d->DFCLMutex); CloseHandle(d->DFSVMutex); d->DFSVMutex = 0; CloseHandle(d->DFCLMutex); d->DFCLMutex = 0; return; } /* * get the PID from DF */ if(d->DF_GetPID(d->my_pid)) { // try to identify the DF version do // glorified goto { IMAGE_NT_HEADERS32 pe_header; IMAGE_SECTION_HEADER sections[16]; HMODULE hmod = NULL; DWORD junk; HANDLE hProcess; bool found = false; d->identified = false; // open process, we only need the process open hProcess = OpenProcess( PROCESS_ALL_ACCESS, FALSE, d->my_pid ); if (NULL == hProcess) break; // try getting the first module of the process if(EnumProcessModules(hProcess, &hmod, 1 * sizeof(HMODULE), &junk) == 0) { CloseHandle(hProcess); cout << "EnumProcessModules fail'd" << endl; break; } // got base ;) uint32_t base = (uint32_t)hmod; // read from this process uint32_t pe_offset = readDWord(base+0x3C); read(base + pe_offset , sizeof(pe_header), (uint8_t *)&pe_header); read(base + pe_offset+ sizeof(pe_header), sizeof(sections) , (uint8_t *)§ions ); // iterate over the list of memory locations vector::iterator it; for ( it=known_versions.begin() ; it < known_versions.end(); it++ ) { uint32_t pe_timestamp; try { pe_timestamp = (*it)->getHexValue("pe_timestamp"); } catch(Error::MissingMemoryDefinition& e) { continue; } if (pe_timestamp == pe_header.FileHeader.TimeDateStamp) { memory_info *m = new memory_info(**it); m->RebaseAll(base); d->my_descriptor = m; d->identified = true; cerr << "identified " << m->getVersion() << endl; break; } } CloseHandle(hProcess); } while (0); // glorified goto end if(d->identified) { d->my_window = new DFWindow(this); d->DF_SyncAffinity(); } else { ((shm_cmd *)d->my_shm)->pingpong = CORE_RUNNING; UnmapViewOfFile(d->my_shm); d->my_shm = 0; ReleaseMutex(d->DFCLMutex); CloseHandle(d->DFSVMutex); d->DFSVMutex = 0; CloseHandle(d->DFCLMutex); d->DFCLMutex = 0; return; } } full_barrier // at this point, DF is attached and suspended, make it run detach(); } bool Process::isSuspended() { return d->suspended; } bool Process::isAttached() { return d->attached; } bool Process::isIdentified() { return d->identified; } Process::~Process() { if(d->attached) { detach(); } // destroy data model. this is assigned by processmanager if(d->my_descriptor) { delete d->my_descriptor; } if(d->my_window) { delete d->my_window; } // release mutex handles we have if(d->DFCLMutex) { CloseHandle(d->DFCLMutex); } if(d->DFSVMutex) { CloseHandle(d->DFSVMutex); } delete d; } memory_info * Process::getDescriptor() { return d->my_descriptor; } DFWindow * Process::getWindow() { return d->my_window; } int Process::getPID() { return d->my_pid; } //FIXME: implement bool Process::getThreadIDs(vector & threads ) { return false; } //FIXME: cross-reference with ELF segment entries? void Process::getMemRanges( vector & ranges ) { char buffer[1024]; char permissions[5]; // r/-, w/-, x/-, p/s, 0 sprintf(buffer, "/proc/%lu/maps", d->my_pid); FILE *mapFile = ::fopen(buffer, "r"); uint64_t offset, device1, device2, node; while (fgets(buffer, 1024, mapFile)) { t_memrange temp; temp.name[0] = 0; sscanf(buffer, "%llx-%llx %s %llx %2llu:%2llu %llu %s", &temp.start, &temp.end, (char*)&permissions, &offset, &device1, &device2, &node, (char*)&temp.name); temp.read = permissions[0] == 'r'; temp.write = permissions[1] == 'w'; temp.execute = permissions[2] == 'x'; ranges.push_back(temp); } } bool Process::suspend() { if(!d->attached) { cerr << "couldn't suspend, not attached" << endl; return false; } if(d->suspended) { cerr << "couldn't suspend, already suspended" << endl; return true; } ((shm_cmd *)d->my_shm)->pingpong = CORE_SUSPEND; if(!d->waitWhile(CORE_SUSPEND)) { cerr << "couldn't suspend, DF not responding to commands" << endl; return false; } d->suspended = true; return true; } bool Process::asyncSuspend() { if(!d->attached) { return false; } if(d->suspended) { return true; } if(((shm_cmd *)d->my_shm)->pingpong == CORE_SUSPENDED) { d->suspended = true; return true; } else { ((shm_cmd *)d->my_shm)->pingpong = CORE_SUSPEND; return false; } } bool Process::forceresume() { return resume(); } bool Process::resume() { if(!d->attached) { cerr << "couldn't resume because of no attachment" << endl; return false; } if(!d->suspended) { cerr << "couldn't resume because of not being suspended" << endl; return true; } ((shm_cmd *)d->my_shm)->pingpong = CORE_RUNNING; d->suspended = false; return true; } bool Process::attach() { if(g_pProcess != 0) { cerr << "there's already a different process attached" << endl; return false; } if(d->attached) { cerr << "already attached" << endl; return false; } // check if DF is there if(!d->isValidSV()) { return false; // NOT } // try locking client mutex uint32_t result = WaitForSingleObject(d->DFCLMutex,0); if( result != WAIT_OBJECT_0 && result != WAIT_ABANDONED) { return false; // we couldn't lock it } // now try getting and attaching the shared memory HANDLE shmHandle = OpenFileMapping(FILE_MAP_ALL_ACCESS,false,"DFShm"); if(!shmHandle) { ReleaseMutex(d->DFCLMutex); return false; // we couldn't lock it } // attempt to attach the opened mapping d->my_shm = (char *) MapViewOfFile(shmHandle,FILE_MAP_ALL_ACCESS, 0,0, SHM_SIZE); if(!d->my_shm) { CloseHandle(shmHandle); ReleaseMutex(d->DFCLMutex); return false; // we couldn't attach the mapping } // we close the handle right here so we don't have to keep track of it CloseHandle(shmHandle); d->attached = true; suspend(); g_pProcess = this; return true; } bool Process::detach() { if(!d->attached) { return false; } // detach segment UnmapViewOfFile(d->my_shm); // release it for some other client ReleaseMutex(d->DFCLMutex); // we keep the mutex handles d->attached = false; d->suspended = false; g_pProcess = 0; return true; } void Process::read (uint32_t src_address, uint32_t size, uint8_t *target_buffer) { // normal read under 1MB if(size <= SHM_BODY) { ((shm_addrlen *)d->my_shm)->address = src_address; ((shm_addrlen *)d->my_shm)->length = size; full_barrier ((shm_cmd *)d->my_shm)->pingpong = CORE_DFPP_READ; d->waitWhile(CORE_DFPP_READ); memcpy (target_buffer, d->my_shm + SHM_HEADER,size); } // a big read, we pull data over the shm in iterations else { // first read equals the size of the SHM window uint32_t to_read = SHM_BODY; while (size) { // read to_read bytes from src_cursor ((shm_addrlen *)d->my_shm)->address = src_address; ((shm_addrlen *)d->my_shm)->length = to_read; full_barrier ((shm_cmd *)d->my_shm)->pingpong = CORE_DFPP_READ; d->waitWhile(CORE_DFPP_READ); memcpy (target_buffer, d->my_shm + SHM_HEADER,size); // decrease size by bytes read size -= to_read; // move the cursors src_address += to_read; target_buffer += to_read; // check how much to write in the next iteration to_read = min(size, (uint32_t) SHM_BODY); } } } uint8_t Process::readByte (const uint32_t offset) { ((shm_addr *)d->my_shm)->address = offset; full_barrier ((shm_cmd *)d->my_shm)->pingpong = CORE_READ_BYTE; d->waitWhile(CORE_READ_BYTE); return ((shm_val *)d->my_shm)->value; } void Process::readByte (const uint32_t offset, uint8_t &val ) { ((shm_addr *)d->my_shm)->address = offset; full_barrier ((shm_cmd *)d->my_shm)->pingpong = CORE_READ_BYTE; d->waitWhile(CORE_READ_BYTE); val = ((shm_val *)d->my_shm)->value; } uint16_t Process::readWord (const uint32_t offset) { ((shm_addr *)d->my_shm)->address = offset; full_barrier ((shm_cmd *)d->my_shm)->pingpong = CORE_READ_WORD; d->waitWhile(CORE_READ_WORD); return ((shm_val *)d->my_shm)->value; } void Process::readWord (const uint32_t offset, uint16_t &val) { ((shm_addr *)d->my_shm)->address = offset; full_barrier ((shm_cmd *)d->my_shm)->pingpong = CORE_READ_WORD; d->waitWhile(CORE_READ_WORD); val = ((shm_val *)d->my_shm)->value; } uint32_t Process::readDWord (const uint32_t offset) { ((shm_addr *)d->my_shm)->address = offset; full_barrier ((shm_cmd *)d->my_shm)->pingpong = CORE_READ_DWORD; d->waitWhile(CORE_READ_DWORD); return ((shm_val *)d->my_shm)->value; } void Process::readDWord (const uint32_t offset, uint32_t &val) { ((shm_addr *)d->my_shm)->address = offset; full_barrier ((shm_cmd *)d->my_shm)->pingpong = CORE_READ_DWORD; d->waitWhile(CORE_READ_DWORD); val = ((shm_val *)d->my_shm)->value; } /* * WRITING */ void Process::writeDWord (uint32_t offset, uint32_t data) { ((shm_addrval *)d->my_shm)->address = offset; ((shm_addrval *)d->my_shm)->value = data; full_barrier ((shm_cmd *)d->my_shm)->pingpong = CORE_WRITE_DWORD; d->waitWhile(CORE_WRITE_DWORD); } // using these is expensive. void Process::writeWord (uint32_t offset, uint16_t data) { ((shm_addrval *)d->my_shm)->address = offset; ((shm_addrval *)d->my_shm)->value = data; full_barrier ((shm_cmd *)d->my_shm)->pingpong = CORE_WRITE_WORD; d->waitWhile(CORE_WRITE_WORD); } void Process::writeByte (uint32_t offset, uint8_t data) { ((shm_addrval *)d->my_shm)->address = offset; ((shm_addrval *)d->my_shm)->value = data; full_barrier ((shm_cmd *)d->my_shm)->pingpong = CORE_WRITE_BYTE; d->waitWhile(CORE_WRITE_BYTE); } void Process::write (uint32_t dst_address, uint32_t size, uint8_t *source_buffer) { // normal write under 1MB if(size <= SHM_BODY) { ((shm_addrlen *)d->my_shm)->address = dst_address; ((shm_addrlen *)d->my_shm)->length = size; memcpy(d->my_shm+SHM_HEADER,source_buffer, size); full_barrier ((shm_cmd *)d->my_shm)->pingpong = CORE_WRITE; d->waitWhile(CORE_WRITE); } // a big write, we push this over the shm in iterations else { // first write equals the size of the SHM window uint32_t to_write = SHM_BODY; while (size) { // write to_write bytes to dst_cursor ((shm_addrlen *)d->my_shm)->address = dst_address; ((shm_addrlen *)d->my_shm)->length = to_write; memcpy(d->my_shm+SHM_HEADER,source_buffer, to_write); full_barrier ((shm_cmd *)d->my_shm)->pingpong = CORE_WRITE; d->waitWhile(CORE_WRITE); // decrease size by bytes written size -= to_write; // move the cursors source_buffer += to_write; dst_address += to_write; // check how much to write in the next iteration to_write = min(size, (uint32_t) SHM_BODY); } } } // FIXME: butt-fugly const std::string Process::readCString (uint32_t offset) { std::string temp; char temp_c[256]; int counter = 0; char r; do { r = readByte(offset+counter); temp_c[counter] = r; counter++; } while (r && counter < 255); temp_c[counter] = 0; temp = temp_c; return temp; } DfVector Process::readVector (uint32_t offset, uint32_t item_size) { /* MSVC++ vector is four pointers long ptr allocator ptr start ptr end ptr alloc_end we don't care about alloc_end because we don't try to add stuff we also don't care about the allocator thing in front */ uint32_t start = g_pProcess->readDWord(offset+4); uint32_t end = g_pProcess->readDWord(offset+8); uint32_t size = (end - start) /4; return DfVector(start,size,item_size); } const std::string Process::readSTLString(uint32_t offset) { //offset -= 4; //msvc std::string pointers are 8 bytes ahead of their data, not 4 ((shm_addr *)d->my_shm)->address = offset; full_barrier ((shm_cmd *)d->my_shm)->pingpong = CORE_READ_STL_STRING; d->waitWhile(CORE_READ_STL_STRING); int length = ((shm_val *)d->my_shm)->value; // char temp_c[256]; // strncpy(temp_c, d->my_shm+SHM_HEADER,length+1); // length + 1 for the null terminator return(string(d->my_shm+SHM_HEADER)); } size_t Process::readSTLString (uint32_t offset, char * buffer, size_t bufcapacity) { //offset -= 4; //msvc std::string pointers are 8 bytes ahead of their data, not 4 ((shm_addr *)d->my_shm)->address = offset; full_barrier ((shm_cmd *)d->my_shm)->pingpong = CORE_READ_STL_STRING; d->waitWhile(CORE_READ_STL_STRING); size_t length = ((shm_val *)d->my_shm)->value; size_t real = min(length, bufcapacity - 1); strncpy(buffer, d->my_shm+SHM_HEADER,real); // length + 1 for the null terminator buffer[real] = 0; return real; } void Process::writeSTLString(const uint32_t address, const std::string writeString) { ((shm_addr *)d->my_shm)->address = address/*-4*/; strncpy(d->my_shm+SHM_HEADER,writeString.c_str(),writeString.length()+1); // length + 1 for the null terminator full_barrier ((shm_cmd *)d->my_shm)->pingpong = CORE_WRITE_STL_STRING; d->waitWhile(CORE_WRITE_STL_STRING); } string Process::readClassName (uint32_t vptr) { int rtti = readDWord(vptr - 0x4); int typeinfo = readDWord(rtti + 0xC); string raw = readCString(typeinfo + 0xC); // skips the .?AV raw.resize(raw.length() - 4);// trim st@@ from end return raw; }