dfhack/tools/supported/autosearch.cpp

783 lines
22 KiB
C++

2011-02-08 14:55:40 -07:00
// this is an incremental search tool. It only works on Linux.
// here be dragons... and ugly code :P
#include <iostream>
#include <climits>
#include <vector>
#include <map>
#include <set>
#include <list>
#include <ctime>
#include <string.h>
#include <stdio.h>
#include <algorithm>
using namespace std;
#ifndef LINUX_BUILD
#define WINVER 0x0500
// this one prevents windows from infecting the global namespace with filth
#define NOMINMAX
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#endif
#include <DFHack.h>
#include "SegmentedFinder.h"
class Token
{
public:
Token(uint64_t _offset)
{
offset = _offset;
offset_valid = 1;
value_valid = 0;
parent = 0;
}
Token(const std::string & offsetn)
{
full_offset_name = offsetn;
offset_valid = 0;
value_valid = 0;
parent = 0;
}
Token()
{
offset_valid = 0;
value_valid = 0;
parent = 0;
}
virtual ~Token(){};
virtual bool LoadData(SegmentedFinder * s) = 0;
virtual void EmptyData()
{
value_valid = false;
};
virtual bool Match(SegmentedFinder * s, uint64_t offset) = 0;
virtual void EmptyOffset()
{
offset_valid = false;
};
virtual bool AcquireOffset(DFHack::VersionInfo * vinfo)
{
vinfo->getOffset(full_offset_name);
2011-02-21 02:25:21 -07:00
return true;
2011-02-08 14:55:40 -07:00
}
virtual uint32_t Length() = 0;
virtual uint64_t getAbsolute(){if(parent) return parent->getAbsolute() + offset; else return offset;};
void setParent( Token *par )
{
par = parent;
}
protected:
uint64_t offset;// offset from the start of the parent token
std::string full_offset_name;
Token * parent;
bool offset_valid :1;
bool value_valid :1;
};
class Byte: virtual public Token
{
public:
Byte(uint64_t _offset):Token(_offset){};
Byte():Token(){};
~Byte();
virtual bool LoadData(SegmentedFinder * s)
{
if(offset_valid)
{
char * ptr = s->Translate<char>(getAbsolute());
if(ptr)
{
value = *ptr;
value_valid = true;
return true;
}
}
return false;
};
// is the loaded data same as data at offset? yes -> set our offset to that.
virtual bool Match(SegmentedFinder * s, uint64_t offs)
{
if(value_valid && (*s->Translate<char>(parent->getAbsolute() + offset)) == value )
{
if(parent)
offset = offs - parent->getAbsolute();
else
offset = offs;
return true;
}
return false;
};
virtual uint32_t Length()
{
return 1;
};
private:
char value;
};
class Short: virtual public Token
{
public:
Short(uint64_t _offset):Token(_offset){};
Short():Token(){};
~Short();
virtual bool LoadData(SegmentedFinder * s)
{
if(offset_valid)
{
uint16_t * ptr = s->Translate<uint16_t>(getAbsolute());
if(ptr)
{
value = *ptr;
value_valid = true;
return true;
}
}
return false;
};
// is the loaded data same as data at offset? yes -> set our offset to that.
virtual bool Match(SegmentedFinder * s, uint64_t offs)
{
if(value_valid && (*s->Translate<uint16_t>(parent->getAbsolute() + offset)) == value )
{
if(parent)
offset = offs - parent->getAbsolute();
else
offset = offs;
return true;
}
return false;
};
virtual uint32_t Length()
{
return 2;
};
private:
uint16_t value;
};
class Long: virtual public Token
{
public:
Long(uint64_t _offset):Token(_offset){};
Long():Token(){};
~Long();
virtual bool LoadData(SegmentedFinder * s)
{
if(offset_valid)
{
uint32_t * ptr = s->Translate<uint32_t>(getAbsolute());
if(ptr)
{
value = *ptr;
value_valid = true;
return true;
}
}
return false;
};
// is the loaded data same as data at offset? yes -> set our offset to that.
virtual bool Match(SegmentedFinder * s, uint64_t offs)
{
if(value_valid && (*s->Translate<uint32_t>(offs)) == value )
{
if(parent)
offset = offs - parent->getAbsolute();
else
offset = offs;
return true;
}
return false;
};
virtual uint32_t Length(){return 4;};
private:
uint32_t value;
};
class PtrVector : virtual public Token
{
public:
PtrVector(uint64_t _offset):Token(_offset){};
PtrVector():Token(){};
~PtrVector();
virtual uint32_t Length(){return 12;};
private:
vector <uint64_t> value;
};
class Pointer: virtual public Token
{
public:
Pointer(uint64_t _offset):Token(_offset){};
Pointer():Token(){};
~Pointer();
virtual uint32_t Length(){return 4;};
private:
uint64_t value;
};
class String: virtual public Token
{
protected:
string value;
};
class Struct: virtual public Token
{
public:
Struct(uint64_t _offset):Token(_offset){};
Struct():Token(){};
~Struct(){};
void Add( Token * t ){members.push_back(t);};
virtual uint32_t Length(){return 0;}; // FIXME: temporary solution, should be the minimal length of all the contents combined
virtual bool LoadData(SegmentedFinder* s)
{
bool OK = true;
for(int i = 0; i < members.size() && OK; i++)
OK &= members[i]->LoadData(s);
return OK;
};
// TODO: IMPLEMENT!
virtual bool Match(SegmentedFinder* s, uint64_t offset)
{
return false;
}
private:
vector<Token*> members;
};
class LinuxString: virtual public String
{
public:
LinuxString(uint64_t _offset):Token(_offset){};
LinuxString():Token(){};
~LinuxString(){};
virtual uint32_t Length(){return 4;};
virtual bool LoadData(SegmentedFinder* s)
{
return false;
}
virtual bool Match(SegmentedFinder* s, uint64_t offset)
{
return false;
}
/*
// read string pointer, translate to local scheme
char *str = sf->Translate<char>(*offset);
// verify
if(!str)
return false;
uint32_t length = *(uint32_t *)(offset - 12);
uint32_t capacity = *(uint32_t *)(offset - 8);
if(length > capacity)
return false;
//char * temp = new char[length+1];
// read data from inside the string structure
//memcpy(temp, str,length + 1);
output = str;
return true;
*/
};
class WindowsString: virtual public String
{
public:
WindowsString(uint64_t _offset):Token(_offset){};
WindowsString():Token(){};
~WindowsString(){};
virtual uint32_t Length(){return 0x1C;}; // FIXME: pouzivat Memory.xml?
virtual bool LoadData(SegmentedFinder* s)
{
return false;
}
virtual bool Match(SegmentedFinder* s, uint64_t offset)
{
return false;
}
string rdWinString( char * offset, SegmentedFinder & sf )
{
char * start_offset = offset + 4; // FIXME: pouzivat Memory.xml?
uint32_t length = *(uint32_t *)(offset + 20); // FIXME: pouzivat Memory.xml?
uint32_t capacity = *(uint32_t *)(offset + 24); // FIXME: pouzivat Memory.xml?
char * temp = new char[capacity+1];
// read data from inside the string structure
if(capacity < 16)
{
memcpy(temp, start_offset,capacity);
//read(start_offset, capacity, (uint8_t *)temp);
}
else // read data from what the offset + 4 dword points to
{
start_offset = sf.Translate<char>(*(uint32_t*)start_offset);
memcpy(temp, start_offset,capacity);
}
temp[length] = 0;
string ret = temp;
delete temp;
return ret;
}
};
inline void printRange(DFHack::t_memrange * tpr)
{
std::cout << std::hex << tpr->start << " - " << tpr->end << "|" << (tpr->read ? "r" : "-") << (tpr->write ? "w" : "-") << (tpr->execute ? "x" : "-") << "|" << tpr->name << std::endl;
}
bool getRanges(DFHack::Process * p, vector <DFHack::t_memrange>& selected_ranges)
{
vector <DFHack::t_memrange> ranges;
selected_ranges.clear();
p->getMemRanges(ranges);
cout << "Which range to search? (default is 1-4)" << endl;
for(int i = 0; i< ranges.size();i++)
{
cout << dec << "(" << i << ") ";
printRange(&(ranges[i]));
}
int start, end;
while(1)
{
string select;
cout << ">>";
std::getline(cin, select);
if(select.empty())
{
// empty input, assume default. observe the length of the memory range vector
// these are hardcoded values, intended for my convenience only
if(p->getDescriptor()->getOS() == DFHack::OS_WINDOWS)
{
start = min(11, (int)ranges.size());
end = min(14, (int)ranges.size());
}
else if(p->getDescriptor()->getOS() == DFHack::OS_LINUX)
{
start = min(2, (int)ranges.size());
end = min(4, (int)ranges.size());
}
else
{
start = 1;
end = 1;
}
break;
}
// I like the C variants here. much less object clutter
else if(sscanf(select.c_str(), "%d-%d", &start, &end) == 2)
{
start = min(start, (int)ranges.size());
end = min(end, (int)ranges.size());
break;
}
else
{
continue;
}
break;
}
end++;
cout << "selected ranges:" <<endl;
vector <DFHack::t_memrange>::iterator it;
it = ranges.begin() + start;
while (it != ranges.begin() + end)
{
// check if readable
if((*it).read)
{
selected_ranges.push_back(*it);
printRange(&*it);
}
it++;
}
return true;
2011-02-08 14:55:40 -07:00
}
bool getNumber (string prompt, int & output, int def, bool pdef = true)
{
cout << prompt;
if(pdef)
cout << " default=" << def << endl;
while (1)
{
string select;
cout << ">>";
std::getline(cin, select);
if(select.empty())
{
output = def;
break;
}
else if( sscanf(select.c_str(), "%d", &output) == 1 )
{
break;
}
else
{
continue;
}
}
return true;
}
bool getString (string prompt, string & output)
{
cout << prompt;
cout << ">>";
string select;
std::getline(cin, select);
if(select.empty())
{
return false;
}
else
{
output = select;
return true;
}
}
// meh
#pragma pack(1)
struct tilecolors
{
uint16_t fore;
uint16_t back;
uint16_t bright;
};
#pragma pack()
void printFound(vector <uint64_t> &found, const char * what)
{
cout << what << ":" << endl;
for(int i = 0; i < found.size();i++)
{
cout << hex << "0x" << found[i] << endl;
}
}
void printFoundStrVec(vector <uint64_t> &found, const char * what, SegmentedFinder & s)
{
cout << what << ":" << endl;
for(int i = 0; i < found.size();i++)
{
cout << hex << "0x" << found[i] << endl;
cout << "--------------------------" << endl;
vecTriplet * vt = s.Translate<vecTriplet>(found[i]);
if(vt)
{
int j = 0;
for(uint32_t idx = vt->start; idx < vt->finish; idx += sizeof(uint32_t))
{
uint32_t object_ptr;
// deref ptr idx, get ptr to object
if(!s.Read(idx,object_ptr))
{
cout << "BAD!" << endl;
break;
}
// deref ptr to first object, get ptr to string
uint32_t string_ptr;
if(!s.Read(object_ptr,string_ptr))
{
cout << "BAD!" << endl;
break;
}
// get string location in our local cache
char * str = s.Translate<char>(string_ptr);
if(!str)
{
cout << "BAD!" << endl;
break;
}
cout << dec << j << ":" << hex << "0x" << object_ptr << " : " << str << endl;
j++;
}
}
else
{
cout << "BAD!" << endl;
break;
}
cout << "--------------------------" << endl;
}
}
class TokenFactory
{
DFHack::OSType platform;
public:
TokenFactory(DFHack::OSType platform_in)
{
platform = platform_in;
}
template <class T>
T * Build()
{
return new T;
}
template <class T>
T * Build(uint64_t offset)
{
return new T(offset);
}
};
template <>
String * TokenFactory::Build()
{
switch(platform)
{
case DFHack::OS_WINDOWS:
return new WindowsString();
case DFHack::OS_LINUX:
case DFHack::OS_APPLE:
return new LinuxString();
}
return 0;
};
template <>
String * TokenFactory::Build(uint64_t offset)
{
switch(platform)
{
case DFHack::OS_WINDOWS:
return new WindowsString(offset);
case DFHack::OS_LINUX:
case DFHack::OS_APPLE:
return new LinuxString(offset);
}
return 0;
};
void autoSearch(DFHack::Context * DF, vector <DFHack::t_memrange>& ranges, DFHack::OSType platform)
{
cout << "stealing memory..." << endl;
SegmentedFinder sf(ranges, DF);
TokenFactory tf(platform);
cout << "done!" << endl;
Struct maps;
maps.Add(tf.Build<String>());
maps.Add(tf.Build<String>());
/*
vector <uint64_t> allVectors;
vector <uint64_t> filtVectors;
vector <uint64_t> to_filter;
cout << "stealing memory..." << endl;
SegmentedFinder sf(ranges, DF);
cout << "looking for vectors..." << endl;
sf.Find<int ,vecTriplet>(0,4,allVectors, vectorAll);
filtVectors = allVectors;
cout << "-------------------" << endl;
cout << "!!LANGUAGE TABLES!!" << endl;
cout << "-------------------" << endl;
uint64_t kulet_vector;
uint64_t word_table_offset;
uint64_t DWARF_vector;
uint64_t DWARF_object;
// find lang vector (neutral word table)
to_filter = filtVectors;
sf.Filter<const char * ,vecTriplet>("ABBEY",to_filter, vectorStringFirst);
uint64_t lang_addr = to_filter[0];
// find dwarven language word table
to_filter = filtVectors;
sf.Filter<const char * ,vecTriplet>("kulet",to_filter, vectorStringFirst);
kulet_vector = to_filter[0];
// find vector of languages
to_filter = filtVectors;
sf.Filter<const char * ,vecTriplet>("DWARF",to_filter, vectorStringFirst);
// verify
for(int i = 0; i < to_filter.size(); i++)
{
vecTriplet * vec = sf.Translate<vecTriplet>(to_filter[i]);
if(((vec->finish - vec->start) / 4) == 4) // verified
{
DWARF_vector = to_filter[i];
DWARF_object = sf.Read<uint32_t>(vec->start);
// compute word table offset from dwarf word table and dwarf language object addresses
word_table_offset = kulet_vector - DWARF_object;
break;
}
}
cout << "translation vector: " << hex << "0x" << DWARF_vector << endl;
cout << "lang vector: " << hex << "0x" << lang_addr << endl;
cout << "word table offset: " << hex << "0x" << word_table_offset << endl;
cout << "-------------" << endl;
cout << "!!MATERIALS!!" << endl;
cout << "-------------" << endl;
// inorganics vector
to_filter = filtVectors;
//sf.Find<uint32_t,vecTriplet>(257 * 4,4,to_filter,vectorLength<uint32_t>);
sf.Filter<const char * ,vecTriplet>("IRON",to_filter, vectorString);
sf.Filter<const char * ,vecTriplet>("ONYX",to_filter, vectorString);
sf.Filter<const char * ,vecTriplet>("RAW_ADAMANTINE",to_filter, vectorString);
sf.Filter<const char * ,vecTriplet>("BLOODSTONE",to_filter, vectorString);
printFound(to_filter,"inorganics");
// organics vector
to_filter = filtVectors;
sf.Filter<uint32_t,vecTriplet>(52 * 4,to_filter,vectorLength<uint32_t>);
sf.Filter<const char * ,vecTriplet>("MUSHROOM_HELMET_PLUMP",to_filter, vectorStringFirst);
printFound(to_filter,"organics");
// tree vector
to_filter = filtVectors;
sf.Filter<uint32_t,vecTriplet>(31 * 4,to_filter,vectorLength<uint32_t>);
sf.Filter<const char * ,vecTriplet>("MANGROVE",to_filter, vectorStringFirst);
printFound(to_filter,"trees");
// plant vector
to_filter = filtVectors;
sf.Filter<uint32_t,vecTriplet>(21 * 4,to_filter,vectorLength<uint32_t>);
sf.Filter<const char * ,vecTriplet>("MUSHROOM_HELMET_PLUMP",to_filter, vectorStringFirst);
printFound(to_filter,"plants");
// color descriptors
//AMBER, 112
to_filter = filtVectors;
sf.Filter<uint32_t,vecTriplet>(112 * 4,to_filter,vectorLength<uint32_t>);
sf.Filter<const char * ,vecTriplet>("AMBER",to_filter, vectorStringFirst);
printFound(to_filter,"color descriptors");
if(!to_filter.empty())
{
uint64_t vec = to_filter[0];
vecTriplet *vtColors = sf.Translate<vecTriplet>(vec);
uint32_t colorObj = sf.Read<uint32_t>(vtColors->start);
cout << "Amber color:" << hex << "0x" << colorObj << endl;
// TODO: find string 'amber', the floats
}
// all descriptors
//AMBER, 338
to_filter = filtVectors;
sf.Filter<uint32_t,vecTriplet>(338 * 4,to_filter,vectorLength<uint32_t>);
sf.Filter<const char * ,vecTriplet>("AMBER",to_filter, vectorStringFirst);
printFound(to_filter,"all descriptors");
// creature type
//ELEPHANT, ?? (demons abound)
to_filter = filtVectors;
//sf.Find<uint32_t,vecTriplet>(338 * 4,4,to_filter,vectorLength<uint32_t>);
sf.Filter<const char * ,vecTriplet>("ELEPHANT",to_filter, vectorString);
sf.Filter<const char * ,vecTriplet>("CAT",to_filter, vectorString);
sf.Filter<const char * ,vecTriplet>("DWARF",to_filter, vectorString);
sf.Filter<const char * ,vecTriplet>("WAMBLER_FLUFFY",to_filter, vectorString);
sf.Filter<const char * ,vecTriplet>("TOAD",to_filter, vectorString);
sf.Filter<const char * ,vecTriplet>("DEMON_1",to_filter, vectorString);
vector <uint64_t> toad_first = to_filter;
vector <uint64_t> elephant_first = to_filter;
sf.Filter<const char * ,vecTriplet>("TOAD",toad_first, vectorStringFirst);
sf.Filter<const char * ,vecTriplet>("ELEPHANT",elephant_first, vectorStringFirst);
printFoundStrVec(toad_first,"toad-first creature types",sf);
printFound(elephant_first,"elephant-first creature types");
printFound(to_filter,"all creature types");
uint64_t to_use = 0;
if(!elephant_first.empty())
{
to_use = elephant_first[0];
vecTriplet *vtCretypes = sf.Translate<vecTriplet>(to_use);
uint32_t elephant = sf.Read<uint32_t>(vtCretypes->start);
uint64_t Eoffset;
cout << "Elephant: 0x" << hex << elephant << endl;
cout << "Elephant: rawname = 0x0" << endl;
uint8_t letter_E = 'E';
Eoffset = sf.FindInRange<uint8_t,uint8_t> (letter_E,equalityP<uint8_t>, elephant, 0x300 );
if(Eoffset)
{
cout << "Elephant: big E = 0x" << hex << Eoffset - elephant << endl;
}
Eoffset = sf.FindInRange<const char *,vecTriplet> ("FEMALE",vectorStringFirst, elephant, 0x300 );
if(Eoffset)
{
cout << "Elephant: caste vector = 0x" << hex << Eoffset - elephant << endl;
}
Eoffset = sf.FindInRange<const char *,vecTriplet> ("SKIN",vectorStringFirst, elephant, 0x2000 );
if(Eoffset)
{
cout << "Elephant: extract? vector = 0x" << hex << Eoffset - elephant << endl;
}
tilecolors eletc = {7,0,0};
Bytestream bs_eletc(&eletc, sizeof(tilecolors));
cout << bs_eletc;
Eoffset = sf.FindInRange<Bytestream,tilecolors> (bs_eletc, findBytestream, elephant, 0x300 );
if(Eoffset)
{
cout << "Elephant: colors = 0x" << hex << Eoffset - elephant << endl;
}
//cout << "Amber color:" << hex << "0x" << colorObj << endl;
// TODO: find string 'amber', the floats
}
if(!toad_first.empty())
{
to_use = toad_first[0];
vecTriplet *vtCretypes = sf.Translate<vecTriplet>(to_use);
uint32_t toad = sf.Read<uint32_t>(vtCretypes->start);
uint64_t Eoffset;
cout << "Toad: 0x" << hex << toad << endl;
cout << "Toad: rawname = 0x0" << endl;
Eoffset = sf.FindInRange<uint8_t,uint8_t> (0xF9,equalityP<uint8_t>, toad, 0x300 );
if(Eoffset)
{
cout << "Toad: character (not reliable) = 0x" << hex << Eoffset - toad << endl;
}
Eoffset = sf.FindInRange<const char *,vecTriplet> ("FEMALE",vectorStringFirst, toad, 0x300 );
if(Eoffset)
{
cout << "Toad: caste vector = 0x" << hex << Eoffset - toad << endl;
}
Eoffset = sf.FindInRange<const char *,vecTriplet> ("SKIN",vectorStringFirst, toad, 0x2000 );
if(Eoffset)
{
cout << "Toad: extract? vector = 0x" << hex << Eoffset - toad << endl;
}
tilecolors toadtc = {2,0,0};
Bytestream bs_toadc(&toadtc, sizeof(tilecolors));
Eoffset = sf.FindInRange<Bytestream,tilecolors> (bs_toadc, findBytestream, toad, 0x300 );
if(Eoffset)
{
cout << "Toad: colors = 0x" << hex << Eoffset - toad << endl;
}
}*/
}
int main (void)
{
string select;
DFHack::ContextManager DFMgr("Memory.xml");
DFHack::Context * DF = DFMgr.getSingleContext();
try
{
DF->Attach();
}
catch (exception& e)
{
cerr << e.what() << endl;
#ifndef LINUX_BUILD
cin.ignore();
#endif
return 1;
}
DFHack::Process * p = DF->getProcess();
vector <DFHack::t_memrange> selected_ranges;
getRanges(p,selected_ranges);
DFHack::VersionInfo *minfo = DF->getMemoryInfo();
autoSearch(DF,selected_ranges, minfo->getOS());
#ifndef LINUX_BUILD
cout << "Done. Press any key to continue" << endl;
cin.ignore();
#endif
return 0;
}